Characteristics of immunity to leaf diseases of winter wheat samples under the conditions of the north-east forest steppe of Ukraine a

Keywords: resistance; powdery mildew; brown rus; septoria disease; pathogen; yield capacity.

Abstract

To realize the genetic potential of the productivity of bread winter wheat varieties, it is necessary to maintain a certain level of plant resistance to disease. Resistance donors may lose this property as a result of changes in the virulence of the pathogen and defeat of the genetic systems of plant resistance. This makes it necessary to search for new resistance sources and donors to leaf diseases. Our researches were conducted using field, laboratory and mathematical-statistical methods. Phenological observations, accounting, evaluation and harvesting were conducted according to currently accepted methods. 86 bread winter wheat samples from the 4th WWSRRN CIMMYT were studied for resistance to leaf diseases in our research during 2014–2016. The manifestation of variability depended significantly on the genotype for three diseases. The highest genotype influence was obseved in resistance to septoria dise­ase, where it was 81%. On average the highest indicator of resistance (7.7) to powdery mildew during the three years of research was observed in the mid-late ripening samples. The mid-early ripening group was considered to be the most adapted to the powdery mildew pathogen in the Northeastern Forest-Steppe. The highest average indicator of resistance (7.5) to brown rust for the three years of research was found in the early ripening group. The samples of the mid-ripening group were most adapted to the brown rust pathogen. The highest average resistance to septoria disease was also found in the early ripening group. The best adaptation to septoria disease was observed in mid-late ripening samples. 36% of the samples were resistant to three diseases. As a result of the research, a number of CIMMYT samples were isolated from the 4th WWSRRN, which exceeded the standard in resistance to powdery mildew, brown rust and septoria disease. They were characterized by better performance. Valuable forms for breeding work that can be resistance donors to leaf diseases were identified among them.

References

Adamski, T., Krystkowiak, K., Kuczynska, A., Mikolajczak, K., Ogrodowicz, P., Ponitka, A., Surma, M., & Slusarkiewicz-Jarzi, A. (2014). Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single see descent in wheat (Triticum aestivum L.). Electronic Joumal of Biotechnology, 8, 1–8.

Ardalani, S., Mirzaghaderi, G., & Badakhshan, H. (2016). A Robertsonian translocation from Thinopyrum bessarabicum into bread wheat confers high iron and zinc contents. Plant Breeding, 135, 286–290.

Bakumenko, O. M., & Vlasenko, V. A. (2018). Efekty pshenychno-zhytnix trans­lokacij na kombinacijnu zdatnist sortiv pshenyci ozymoyi [Effects of wheat-rye translocations on the combining ability of winter bread wheat cultivars]. Breeding and Seed Production, 113, 8–17.

Bakumenko, O. M., Osmachko, O. M., & Vlasenko, V. A. (2015). Vplyv pshenychno-zhytnih translokacij 1AL/1RS i 1BL/1RS na elementy produktyvnosti v F1 pshenyci myakoyi ozymoyi [The effect of wheat-rye translocations 1AL/1RS and 1BL/1RS on performance elements in F1 bread winter wheat]. ScienceRise, 12(17), 69–75.

Blyznyuk, R. M., Demydov, O. A., Chugunkov, T. V., Fedorenko, M. V., & Be­rezovskyj, D. Y. (2019). Stijkist sortiv pshenyci myakoyi yaroyi do lystko­vyh grybnyh hvorob [Resistance of bread spring wheat varieties to leaf fungal diseases]. Agroecologigal Jornal, 1, 74–79.

Brygadyrenko, V. V., & Nazimov, S. S. (2015). Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. Zookeys, 481, 57–68.

Calvo-Salazar, V., Singh, R. P., Huerta-Espino, J., Cruz-Izquierdo, S., Lobato-Ortiz, R, Sandoval-Islas, S., Vargas-Hernández, M., German, S., Silva, P., Basnet, B. R., Lan, C. X., & Herrera-Foessel, S. A. (2015). Genetic analysis of resistance to leaf rust and yellow rust in spring wheat cultivar Kenya Kongoni. Plant Disease, 99(8), 1153–1160.

Chhetri, M., Toor, A., & Bariana, H. (2016). Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Euphytica, 209, 637–649.

Dospehov, B. A. (1985). Metodika polevogo opyta [Field experiment methodo­logy]. Agropromizdat, Moscow (in Russian).

Fahmi, A. I., El-Shehawi, A. M., & El-Orabey, W. M. (2015). Leaf rust resistance and molecular identification of Lr 34 gene in egyptian wheat. Journal of Microbial and Biochemical Technology, 7(6), 338–343.

Hao, M., Liu, M., Luo, J., Fan, C., Yi, Y., Zhang, L., Yuan, Z., Ning, S., Zheng, Y., & Liu, D. (2018). Introgression of powdery mildew resistance gene Pm56 on rye chromosome Arm 6RS into wheat. Frontirs in Plant Science, 17, 1–8.

Khomenko, L. O., & Sandeczka, N. V. (2018). Dzherela kompleksnoyi stijkosti pshenyci ozymoyi (Triticum aestivum L.) u selekciyi na adaptyvnist’ [Sour­ces of complex resistance of winter wheat (Triticum aestivum L.) for adaptive breeding]. Breeding and Seed Production, 14(3), 270–276.

Khondoker, A. M., Pawan, K. S., Sonder, K., Kruseman, G., & Erenstein, O. (2019). Averting wheat blast by implementing awheat holiday: In: Search of alternative crops in West Bengal, India. PLoS One, 14(2), e0211410.

Kim, W., Johnson, J. W., Baenziger, P. S., Lukaszewski, A. J., & Gaines, C. S. (2004). Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Science, 44(4), 1254–1258.

Koller, T., Brunner, S., Herren, G., Humi, S., & Keller, B. (2018). Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theoretical and Applied Genetics, 131, 861–871.

Kolomiiets, L. A., Humeniuk, O. V., Derhachov, O. L., & Koliadenko, S. S. (2018). Novyj sort pshenytsi miakoji ozymoi “Horlytsia Myronivska” [A new variety of soft winter wheat “Horlytsia Myronivska”]. Plant Varieties Studying and Protection, 4(1), 21–27.

Kovalyshyna, G. M., & Dmytrenko, Y. M. (2017). Dzherela stijkosti proty zbudnyka buroji irzhi ta yikh vykorystannia u protsesi stvorennia sortiv pshenytsi mjakoji [Sources of resistance to brown rust pathogen and their use in the development of bread wheat varieties]. Plant Varieties Studying and Protection, 13(2), 379–386.

Kovalyshyna, G. M., Dmytrenko, Y. M., Dеmydov, O. A., Mukha, T. I., & Murashko, L. A. (2017). Selektsija pshenytsi ozymoji na stijkist’ proty khvorob [Winter wheat breeding for disease resistence]. Breeding and Seed Production, 269, 99–110.

Kovalyshyna, G. M., Dmytrenko,Y. M., Karelov, A. V., Sozinov, I. O., Kozub, N. O., & Gumenyuk, O. V. (2018). Kharakterystyka novyh sortiv pshenyci myakoyi ozymoyi myronivskoji selekciji za alel’nym stanom gena stijkosti proty zbudnyka buroyi irzhi Lr34 [Characteristics of new varieties of winter common wheat breeding of the myronivka institute of wheat as the allelic state of the Lr34 leaf rust resistance gene]. Life and Environmental Sciences, 10(3–4), 139–146.

Kyrychenko, V. V., Petrenkova, V. P., Chernyayeva, I. M., Markova T. Y., Popov, V. M., Luchnaya, I. S., Babushkina, T. V., Ryabchun, N. I., Zvyagin, A. F., Le­onov, O. Y., Vasko, N. I., Kozachenko, M. R., Zvyaginceva, A. M., Yegorov, D. K., Derevyanko, V. P., Ryabchun, V. K., Kapustina, T. B., Melnyk, B. S., Chernobaj, L. M., Kozubenko, L. V., Kytajova, S. S., Ponurenko, S. G., Grygorashhenko, L. V., Gorbachova, S. M., Sokol, T. V., Bezuglyj, I. M., Vasylenko, A. O., Ryabuxa, C. S., Borovska, I. Y., Maklyak, K. M., & Kolomaczka, V. P. (2012). Osnovy selekciji poliovyh kul’tur na stijkist do shkidlyvyh organizmiv [Fundamentals of field crop breeding to pathogen resistance]. Y. Yuriev Plant Production Institute, Kharkiv (in Ukrainian).

Leonov, O. Y., Petrenkova, V. P., Luchna, I. S., Suvorova, K. Y., & Chuguyev, S. V. (2016). Hvoroby pshenyci, poshyreni v Ukrajini: shkidlyvist’, genetychnyj kontrol’ ta rezul’tatyvnist’ selekciji na stijkist’ [Wheat diseases common in Ukraine: Harmfulness, genetic control and effectiveness of breeding for resistance]. Breeding and Seed Production, 109, 53–92.

Li, M., Tang, Z., Qiu, L., Wang, Y., Tang, S., & Fu, S. (2016). Identification and physical mapping of new PCR-based markers specific for the long arm of rye (Secale cereale L.) chromosome 6. Journal of Genetics and Genomics, 43(4), 209–216.

Liu, N., Bai, G., Lin, M., Xu, X., & Zheng, W. (2017). Genome-wide association analysis of powdery mildew resistance in U.S. winter wheat. Scientific Reports, 7(11743), 1–11.

Liu, N., Liu, Z. L., Gong, G., Zhang, M., Wang, X., & Zhou, Y. (2015). Virulence structure of Blumeria graminis f. sp. tritici and its genetic diversity by ISSR and SRAP profiling analyses. PLoS One, 10(6), 1–20.

Liu, W., Koo, D. H., Xia, Q., Li, C., Bai, F., & Song, Y. (2017). Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and Applied Genetics, 130, 841–848.

Liu, W., Koo, D., Friebe, B., & Gill, B. S. (2016). A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines. Theoretical and Applied Genetics, 129(12), 2359–2368.

Lytvynenko, M. A., & Topal, M. M. (2015). Pshenychno-zhytni translokaciji 1AL/1RS i 1VL/1RS ta yakist zerna u sortiv pshenyci myakoyi ozymoyi [Wheat-rye translocations 1AL/1RS and 1ВL/1RS for grain quality in soft winter wheat varieties]. Scientific Journal, 311(8), 82–87.

Mamoudou, S., Changyou, W., Alam, M. A., Chunhuan, C., & Wanquan, J. I. (2016). Genetic analysis of powdery mildew resistance gene using SSR markers in common wheat originated from wild emmer (Triticum dicoccoides Thell). Field Crops, 21(1), 10–15.

McIntosh, R. A., Yamazaki, Y., Dubcovski, J., Rogers, W. J., Morris, C. F., Sommers, D. J., Appels, R., & Devos, K. M. (2008). Catalogue of gene symbols for wheat. 11th International wheat genetics symposium. Brisbane Qld.

Morgun, V. V., Gavrylyuk, M. M., Oksom, V. P., Morgun, B. V., & Pochynok, V. M. (2014). Vprovadzhennya u vyrobnycztvo novyh, stijkyh do stresovyh faktoriv, vysokoproduktyvnyh sortiv ozymoyi pshenyci, stvorenyh na osnovi vykorystannya hromosomnoyi inzheneriyi ta marker-dopomizhnoyi selekciyi [Introduction of new, stress resistant, high-yielding winter wheat varieties based on chromosome engineering and marker-assisted selection]. Science and Innovation, 10(5), 40–48 (in Ukrainian).

Mukha, T. I., & Zayima, O. A. (2013). Harakterystyka novyh sortiv pshenyci ozymoyi myronivs’koyi selekciyi za stijkistiu proty septoriozu lystya [Characterization of new wheat varieties of winter myroniv breeding as for resistance to leaf septoria disease]. Breeding and Seed Production, 103, 271–276.

Olson, E. L., Brown-Guedira, G., Marshalf, D. S., Jin, Y., Mergoum, M., Lowe, I., & Dubcovsky, J. (2010). Genotyping of U.S. wheat germplasm fro presense of stem rust resistance genes Sr24, Sr36, and Sr1RSAmigo. Crop Scuence, 50, 668–675.

Pretorius, Z. A. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease, 84(2), 203.

Qiu, L., Tang, Z. X., Li, M., & Fu, S. L. (2016). Development of new PCR-based markers specific for chromosome arms of rye (Secale cereale L.). Genome, 59, 159–165.

Reshetniak, D. Y., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Possibility of identifying plant components of the diet of Harpalus rufipes (Coleoptera, Carabi­dae) by visual evaluation. Regulatory Mechanisms in Biosystems, 8(3), 377–383.

Shyshkyn, N. V., Derov, T. G., Gultyaeva, E. Y., & Shajdayuk, E. L. (2018). Identification of the genes resistant to brown rust in winter soft wheat varieties with the use of conventional and modern research methods. Plant Protection, 59, 63–67.

Suxomud, O. G. (2013). Resistance of winter wheat to the lesion by septoria spot depending on the variety. The Latest Agrotechnology, 1(1), 11–17.

Vlasenko, V. A., Kochmarskyi, V. S., Koliuchyi, V. T., Kolomiiets, L. A., Khomen­ko, S. O., & Solona, V. Y. (2012). Selektsijna evoliutsija myronivskyh pshenyts [Breeding evolution of Myroniv wheat]. Myronivka (in Ukrainian).

Volkodav, V. V. (2003). Metodyka derzhavnoho vyprobuvannia sortiv roslyn na prydatnist do poshyrennia v Ukrajini [State testing methodology of plant varieties for spread adaptation in Ukraine]. In: Right protection of plant variety: Official bulletin. Alefa, Kyiv (in Ukrainian).

Vozhzhova, N. N. (2018). Identyfikaciya gena ustojchyvosti k buroj rzhavchyne Lr34 v sortax y kollekcionnyh obrazcah ozymoj myagkoj pshenyczy Agrarnogo nauchnogo centra “Donskoj” [Identification of the Lr34 gene for resistance to leaf rust in varieties and collection samples of winter soft wheat from the Agricultural Research Center “Donskoy”]. Vavilov Journal of Genetics and Breeding, 22(3), 329–332.

Wiersma, A. T., Pulman, J. A., Brown, L. K., Cowger, C., & Olson, E. L. (2017). Identification of Pm58 from Aegilops tauschii. Theorіtical Applied Genetics, 130(6), 1123–1133.

Yachevska, G. L. (1990). Ispol’zovanije metoda otdalennoj gibridizacii v selekcii pshenicy [Using the remote hybridization method in wheat breeding]. Agroprominform, Moscow (in Russian).

Zeng, D., Luo, J., Li, Z., Chen, G., Zhang, L., & Ning, S. (2016). High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines. PLoS One, 11(9), 1–10.

Zhang, R., Sun, B., Chen, J., Cao, A., Xing, L., & Feng, Y. (2016). Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theorical Applied Genetics, 129, 1975–1984.

Published
2020-01-22
How to Cite
Osmachko, O. M., Vlasenko, V. A., Bakumenko, O. M., & Bilokopytov , V. I. (2020). Characteristics of immunity to leaf diseases of winter wheat samples under the conditions of the north-east forest steppe of Ukraine a. Regulatory Mechanisms in Biosystems, 11(1), 45-53. https://doi.org/10.15421/022006