Polychlorinated biphenyls: Hazardous properties and environmentally sound management in Ukraine

Keywords: PCB; toxicity; environmentally sound management; dangerous properties.


Polychlorinated biphenyls are one of the most dangerous compounds for human health and the environment and are included to Annex C of the Stockholm Convention on Persistent Organic Pollutants. Since Ukraine joined the Stockholm Convention in 2007, the National Implementation Plan of the Stockholm Convention provides the environmentally sound disposal of polychlorinated biphenyls, as well as creation of a monitoring system and sharing information about toxicants. Polychlorinated biphenyls’ have fire resistance, low volatility and stability. Therefore, these substances have been widely used in industry, but on the other hand, they are a problem for the environment. The main hazardous properties of polychlorinated biphenyls are bioaccumulation, stability in the environment, the possibility of formation in accidents (especially in fires) of extremely persistent and toxic aromatic compounds, such as dioxins and furans. Toxic responses to polychlorinated biphenyls are: acute lethality; body weight loss; carcinogenesis; dermal toxi­city; fatty liver; genotoxicity; hepatomegaly; immunosuppressive effects; neurotoxicity; porphyria; reproductive and developmental toxicity; thymic atrophy; thyroid hormone-level alterations. The most likely risks of polychlorinated biphenyls contamination in Ukraine are in the areas of operation, repair or storage of electrical equipment. According to quantity, the leading regions for accumulated polychlorinated biphenyls in Ukraine, are Dnipropetrovsk (459 tons), Volyn (280 tons) and Kyiv regions (255 tons). A comprehensive approach to reducing the risk of polychlorinated biphenyls for human health and the environment involves the improvement of the regulatory framework for managing in all stages of “life cycle”. Obtaining complete and accurate information on the volumes and forms of polychlorinated biphenyls accumulation and creation of modern effective technological support for polychlorinated biphenyls’ degradation are a necessary part of environmentally sound management of polychlorinated biphenyls in Ukraine. The “Polychlorinated Biphenyls Database in Ukraine” information system (2017) was created as a National Polychlorinated Biphenyls Registry in Ukraine. It was designed to systematize, structure, and analyze the large amount of information collected during the inventorising of polychlorinated biphenyls. The best technology of polychlorinated biphenyls degradation must not only provides a high degree of polychlorinated biphenyls’ destruction, but also not lead to the formation of new toxic compounds.


Addink, R., & Olie, K. (1995) Mechanisms for formation and destruction of poly­chlorinated dibenzo-p-dioxins and dibenzofurancs in heterogeneous systems. Environmental Science and Technology, 29, 1425–1435.

Babushok, V., & Tsang, W. (2003). Gas-phase mechanism for dioxin formation. Chemosphere, 51, 1023–1029.

Bogdal, C., Muller, C., Buser, A., Wang, Z., Scheringer, M., & Gerecke, A. (2014). Emissions of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans during 2010 and 2011 in Zurich, Switzerland. Environment Science Technology, 48, 482–490.

Brix, A., Jokinen, M., Walker, N., Sells, D., & Nyska, A. (2004). Characterization of bronchiolar metaplasia of the alveolar epithelium in female Sprague-Dawley rats exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Toxicologic Pathology, 32(3), 333–337.

Cao, Y., Winneke, G., Wilhelm, M., Wittsiepe, J., Lemm, F., Fürst, P., Ranft, U., Imöhl, M., Kraft, M., Oesch-Bartlomowicz, B., & Krämer, U. (2007). Environmental exposure to dioxins and polychlorinated biphenyls reduce levels of gonadal hormones in newborns: Results from the Duisburg cohort study. International Journal of Hygiene and Environmental Health, 211, 30–90.

Carlsson, P., Breivik, K., Brorström-Lundén, E., Cousins, I., Christensen, J., Grimalt, J., Halsall, C., Kallenborn, R., Abass, K., Lammel, G., Munthe, J., MacLeod, M., Odland, J., Pawlak, J., Rautio, A., Reiersen, L., Schlabach, M., Stemmler, I., Wilson, S., & Wöhrnschimmel, H. (2018). Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes: A comprehensive review combined with ArcRisk project results. Environment Science Pollution Results International, 25(23), 22499–22528.

Chen, P., & Hsu, S. (1986). PCB poisoning from toxic rice-bran oil in Taiwan. In: Waid, J. (ed.). PCBs and the Environment. CRC Press, Michigan.

Chetverykov, V., Koval, S., Rossoha, A., & Bondar, O. (2018). Vyznachennja shljahiv ekologichno obgruntovanogo vydalennja PHD v Ukrajini [Guidelines on environmentally sound management and final disposal of polychlorinated biphenyls (PCBs)]. OLDI-PPUS, Kherson (in Ukrainian).

Cromwell, H., Johnson, A., McKnight, L., Horinek, M., Asbrock, C., Burt, S., Jolous-Jamshidi, B., & Meserve, L. (2007). Effects of polychlorinated biphenyls on maternal odor conditioning in rat pups. Physiology & Behavior, 91(5), 658–666.

Cummings, J., Nunez, A., & Clemens, L. (2005). A cross-fostering analysis of the effects of PCB 77 on the maternal behavior of rats. Physiology and Behavior, 85(2), 83–91.

De Roos, A., Hartge, P., Lubin, J., Colt, J., Davis, S., Cerhan, J., Severson, R., Cozen, W., Patterson, D., Needham, L., & Rothman, N. (2005). Persistent organochlorine chemicals in plasma and risk of non-Hodgkin’s lymphoma. Cancer Rescues, 65(23), 11214–11226.

Diamond, M., Melymuk, L., Csiszar, S., & Robson, M. (2010). Estimation of PCB stocks, emissions, and urban fate: Will our policies reduce concentrations and exposure? Environ Science Technology, 44, 2777–2783.

Dianyi, Y. (2014). Case studies in environmental medicine polychlorinated biphenyls (PCBs). Agency for Toxic Substances and Disease Registry, New York.

Faroon, O., & Ruiz, P. (2011). Addendum to the toxicological profile for polychlorinated biphenyls. Atlanta.

Farrington, J., (2001). A risk-management strategy for PCB-contaminated sediments. National Academy Press, Washington.

Feshin, D., Komarova, K., Zheltov, V., Kalinkevich, G., Buhanko, N., Brodsky, E. (2006). Vlijanie kormov, zagrjaznennyh PHB, na organizm kur i cypljat [Effect of PCB contaminated feed on the body of chickens and hens]. Veterinary Medicine, 8, 48–52 (in Russian).

Feshin, D., Komarova, К., Zheltov, V., Brodsky, E., Kahnkevich, G., Shelepchikov, A., & Boukhanko, N. (2005). Bioaccumulation and distribution of PCBs in hens and chickens. Organohalogen Compound, 67, 1498–1501.

Gasic, B., MacLeod, M., Klanova, J., Scheringer, M., Ilic, P., Lammel, G., Pajovic, A., Breivik, K, Holoubek, I., & Hungerbühler, K. (2010). Quantification of sources of PCBs to the atmosphere in urban areas: A comparison of cities in North America, Western Europe and former Yugoslavia. Environmental Pollution, 158, 3230–3235.

Halse, A., Schlabach, M., Eckhardt, S., Sweetman, A., Jones, K., & Breivik, K. (2011). Spatial variability of POPs in European background air. Atmospheric Chemistry and Physics, 11, 1549–1564.

Hardell, L., Bavel, B., Lindström, G., Carlberg, M., Dreifaldt, A., Wijkström, H., Starkhammar, H., Eriksson, M., Hallquist, A., & Kolmert, T. (2003). Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environmental Health Perspectives, 111(7), 930–934.

Hardell, L., Bavel, B., Lindström, G., Carlberg, M., Dreifaldt, A., Wijkström, H., Starkhammar, H., Eriksson, M., Hallquist, A., & Kolmert, T. (2004). Concentrations of polychlorinated biphenyls in blood and the risk for testicular cancer. Intetnational Journal of Andrology, 27(5), 282–290.

Hardell, S., Tilander, H., Welfinger-Smith, G., Burger, J., & Carpenter, D. (2010). Levels of polychlorinated biphenyls (PCBs) and three organochlorine pesticides in fish from the Aleutian Islands of Alaska. PLoS One, 5(8), e12396.

Heilmann, C., Grandjean, P., Weihe, P., Nielsen, F., & Budtz-Jørgensen, E. (2006). Reduced antibody responses to vaccinations in children exposed to polychlorinated biphenyls. PLoS Medicine, 3(8), 1352–1359.

Hoffman, D., Melancon, M., Klein, P., Rice, C., Eisemann, J., Hines, R., Spann, J., & Pendleton, G. (1996). Developmental toxicity of PCB 126 (3,3′,4,4′,5-pentachlorobiphenyl) in nesting American kestrels (Falco sparverius). Fundamental and Applied Toxicology, 34(2), 188–200.

Huang, H., & Buekens, A. (1995). On the mechanisms of dioxin formation in combustion processes. Chemosphere, 31, 4099–4117.

Hung, H., Katsoyiannis, A., Brorström-Lundén, E., Olafsdottir, K., Aas, W., Breivik, K., Bohlin-Nizzetto, P., Sigurdsson, A., Hakola, H., Bossi, R., Skov, H., Sverko, E., Barresi, E., Fellin, P., & Wilson, S. (2016). Temporal trends of persistent organic pollutants (POPs) in arctic air: 20 years of monitoring under the arctic monitoring and assessment programme (AMAP). Environmental Pollution, 217, 52–61.

Kannan, K., Blankenship, A., Jones, P., & Giesy, J. (2000). Toxicity reference values for the toxic effects of polychlorinated biphenyls to aquatic mammals. Human Ecological Risk Assessessment, 6(1), 181–201.

Khakhula, V., Karaulna, V., Bogatyr, L., Karpuk, L., Krikunova, O., & Pavlichenko, A. (2018). Agroecological assessment of contamination of trophic chain components by persistent organic pollutants. Ukrainian Journal of Ecology, 8(2), 42–53.

Kummling, K., Festarini, L., Woodland, S., Kornelsen, P., & Hallett, D. (1997). An evaluation of levels of chlorinated aromatic compounds in ECO LOGIC process stack outputs. Organohalogen Compounds, 32, 66–71.

Kutsenko, S. (2003). Osnovy toksikologii [Fundamentals of toxicology]. Foliant, Saint Petersburg (in Russian).

Lee, D., Lee, I., Jin, S., Steffes, M., & Jacobs, D. (2007). Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: Results from the National Health and Nutrition Examination Survey 1999–2002. Diabetes Care, 30(3), 622–628.

Leonards, P. (1997). PCBs in mustelids. Analysis, food chain transfer and critical levels. Academisch Proefschrift, Amsterdam.

Macdonald, R., & Bewers, J. (1996). Contaminants in the arctic marine environment: Priorities for protection. Journal of Marine Science, 53, 537–563.

Moklyachuk, L., Lishchuk, A., Yatsuk, I., & Gorodyska, I. (2017). Zabrudnennia agroekosystem neprydatnymy pestycydamy jak regіonal’nyj іndykator stanu zemel’nykh resursіv [Agricultural pollution by obsolete pesticides as a regional land resource indicator]. Balanced Nature Management, 2, 140–144 (in Ukrainian).

Mykhailenko, V., Safranov, T., & Shanina, T. (2018). Analiz sytuaciji zi stijkymy organichnymy zabrudniuval’nymy rechovynamy v Ukrayini (na prykladi Odesy) [An analysis of the situation of persistent organic pollutants in Ukraine (by the example of Odessa)]. Visnyk of V. N. Karazin Kharkiv National University, Series Еcоlogy, 18, 90–96 (in Ukrainian).

Nyska, A., Jokinen, M., Brix, A., Sells, D., Wyde, M., Orzech, D., Haseman, K., Fla­ke, G., & Walker, N. (2004). Exocrine pancreatic pathology in female Harlan Sprague-Dawley rats after chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin and dioxin-like compounds. Environmental Health Perspectives, 112(8), 903–909.

Park, H., Hertz-Picciotto, I., & Petrik, J. (2008). Prenatal PCB exposure and thymus size at birth in neonates in Eastern Slovakia. Environmental Health Perspectives, 116(1), 104–109.

Rahuman, B., Pistone, L., Trifiro, F., & Miertus, S. (2000). Destruction technologies for polychlorinated biphenyls (PCBs). ICS-UNIDO, Trieste.

Ritchie, J., Vial, S., Fuortes, L., Guo, H., Reedy, V., & Smith, E. (2003). Organochlorines and risk of prostate cancer. Journal of Occupational and Environmental Medicine, 45(7), 692–702.

Safe, S. (1984). Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): Biochemistry, toxicology and mechanism of action. Critical Reviews in Toxicology, 13(4), 319–395.

Safe, S. (1994). Polychlorinated biphenyls (PCBs): Environmental impact, biochemical and toxic responses, and implications for risk assessment. Critical Reviews in Toxicology, 24(2), 87–149.

Schwinkendorf, W., Musgrave, B., & Drake, R. (1997). Evaluation of alternative nonflame technologies for destruction of hazardous organic waste. MWFA, Idaho.

Seegal, R. (1996). Epidemiological and laboratory evidence of PCB-induced neurotoxicity. Critical Reviews in Toxicology, 26(6), 709–737.

Strang, C., Levine, S., Orlan, B., Gouda, T., & Saner, W. (1984). High resolution of gas chromatographic analysis of cytochrome P-448 inducing PCB congeners in hazardous waste. Journal of Chromatography, 314, 482–487.

Tiedje, J., Quensen, J., Chee-Sanford, J., Schimel, J., & Boyd, S. (1993). Microbial reductive dechlorination of PCBs. Biodegradation, 4(4), 231–240.

Walker, M., & Peterson, R. (1994). Aquatic toxicity of dioxins and related chemicals. In: Schecter, A. (Ed.). (1994). Dioxins and health. Plenum, New York.

Weber, R. (2004). Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies. – PCB destruction by super critical water oxidation (SCWO). Organohalogen Compounds, 66, 1263–1269.

Wöhrnschimmel, H., MacLeod, M., & Hungerbuhler, K. (2013). Emissions, fate and transport of persistent organic pollutants to the Arctic in achanging global climate. Environmental Science Technology, 47, 2323–2330.

How to Cite
Ryzhenko, N. O., Bondar, O. I., Chetverykov, V. V., & Fedorenko, Y. O. (2020). Polychlorinated biphenyls: Hazardous properties and environmentally sound management in Ukraine . Regulatory Mechanisms in Biosystems, 11(1), 37-44. https://doi.org/10.15421/022005