Haemodynamic effects of hyperventilation on healthy men with different levels of autonomic tone

Keywords: sympathicotonic persons; normothonic persons; vagotonic persons; central haemodynamics; hypocapnia.


The topicality of the research is stipulated by insufficient study of the correlation between the functional state of the cardiorespiratory system and autonomic tone. The goal of the research was to analyze the changes of central haemodynamics with 10-minute regulated breathing at the rate of 30 cycles per minute and within 40 minutes of recovery after the test in healthy young men with different levels of autonomic tone. Records of the chest rheoplethysmogram were recorded on a rheograph KhAI-medica standard (KhAI-medica, Kharkiv, Ukraine), a capnogram - in a lateral flow on a infrared capnograph (Datex, Finland), and the duration of R-R intervals was determined by a Polar WIND Link in the program of Polar Protrainer 5.0 (Polar Electro OY, Finland). Systolic and diastolic blood pressure were measured by Korotkov’s auscultatory method by mercury tonometer (Riester, Germany). The indicator of the normalized power of the spectrum in the range of 0.15–0.40 Hz was evaluated by 5-minute records; three groups of persons were distinguished according to its distribution at rest by the method of signal deviation, namely, sympathicotonic, normotonic and parasympathicotonic. The initial level of autonomic tone was found to impact the dynamics of СО2 level in alveolar air during hyperventilation and during recovery thereafter. Thus, PetCО2 was higher (41.3 mm Hg) in parasympathicotonic than in sympathicotonic (39.3 mm Hg) and normotonic (39.5 mm Hg) persons. During the test, R-R interval duration decreased being more expressed in normotonic persons. At the same time, the heart index was found to increase in three groups, and general peripheral resistance – to decrease mostly in normo- and parasympathicotonic persons. In addition, the reliable increase of stroke index and heart index was found in these groups. In the recovery period after hyperventilation, the decrease of tension index and ejection speed was found in normo- and, particularly, parasympathicotonic compared with sympathicotonic men and the increase of tension phase and ejection phase duration.


Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of the heart rate fluctuation: A quantative probe of beat to beat cardiovascular control. Science, 213, 220–222.

Allan, P. D., Faulkner, J., O'Donnell, T., Lanford, J., Wong, L. K., Saleem, S., Woolley, B., Lambrick, D., Stoner, L., & Tzeng, Y. C. (2015). Hemodynamic variability and cerebrovascular control after transient cerebral ischemia. Physiological Reports, 3(11), e12602.

Appel, M. L., Berger, R. D., Saul, G. P., Smith, J. M., & Cohen, R. J. (1989). Beat to beat variability in cardiovascular variables: Noise or music? Journal of the American College of Cardiology, 14, 1139–1148.

Atlaoui, D., Pichot, V., Lacoste, L., Barale, F., Lacour, J. R., & Chatard, J. C. (2007). Heart rate variability, training variation and performance in elite swimmers. International Journal of Sports Medicine, 28(5), 394–400.

Baevskij, R. M., Ivanov, G. G., Chirejkin, L. V., Gavrilushkin, A. P., Dovgalevskij, P. J., Kukushkin, J. A., Mironova, T. F., Priluckij, D. A., Semenov, A. V., Fedorov, V. F., Flejshman, A. N., & Medvedev, M. M. (2001). Analiz variabel’nosti serdechnogo ritma pri ispol’zovanii razlichnykh elektrokardiograficheskikh sistem) [Analysis of heart rate variability when using different electrocardiographic systems]. Vestnik Aritmologii, 24, 65–87 (in Russian).

Bajmakanova, G. E. (2013). Interpretacija pokazatelej gazov arterial’noj krovi [In­terpretation of arterial blood gases]. Pul’munologіja і Alergologіja, 2, 42–45 (in Russian).

Baković, D., Eterović, D., Valic, Z., Saratlija-Novaković, Ž., Palada, I., Obad, A., & Dujić, Ž. (2006). Increased pulmonary vascular resistance and reduced stroke volume in association with CO2 retention and inferior vena cava dilatation. Journal of Applied Physiology, 101(3), 866–872.

Bär, K. J., Schulz, S., Koschke, M., Harzendorf, C., Gayde, S., Berg, W., Voss, A., Yeragani, V. K., & Boettger, M. K. (2009). Correlations between the autonomic modulation of heart rate, blood pressure and the pupillary light reflex in healthy subjects. Journal of the neurological sciences, 15(279), 9–13.

Bernardi, L., Passino, C., Spadacini, G., Valle, F., Leuzzi, S., Piepoli, M., & Sleight, P. (1997). Arterial baroreceptors as determinants of 0.1 Hz and respiration-related changes in blood pressure and heart rate spectra. Studies in Health Technology and Informatics, 35, 241–252.

Bhandare, A., Huckstepp, R., & Dale, N. (2019). Analyzing the brainstem circuits for respiratory chemosensitivity in freely moving mice. BioRxiv, 492041, 1–15.

Boulet, L. M., Tymko, M. M., Jamieson, A. N., Ainslie, P. N., Skow, R. J., & Day, T. A. (2016). Influence of prior hyperventilation duration on respiratory chemosensitivity and cerebrovascular reactivity during modified hyperoxic rebreathing. Experimental Physiology, 101(7), 821–835.

Bouteau, N., & Tavernier, B. (2004). Stroke volume variation as an indicator of fluid responsiveness. Anesthesia and Analgesia, 98(1), 278–279.

Bukov, J. A., & Belousova, I. M. (2016). Ispol’zovanie dyhatel’nogo trenazhera v uchebnom processe po fizicheskomu vospitaniju s cel’ju korrekcii ventiljacionnyh tipov u studentov podgotovitel’noj medicinskoj gruppy [The use of a breathing simulator in the educational process for physical education in order to correct ventilation types in students of the preparatory medical group]. Uchenye Zapiski Universiteta Imeni P. F. Lesgafta, 132, 49–54 (in Russian).

Burman, J., Lukkarinen, H., Elenius, V., Remes, S., Kuusela, T., & Jartti, T. (2018). Eucapnic voluntary hyperventilation test in children. Clinical Physiology and Functional Imaging, 38(4), 718–720.

Cassaglia, P. A., Griffiths, R. I., & Walker, A. M. (2008). Sympathetic withdrawal augments cerebral blood flow during acute hypercapnia in sleeping lambs. Sleep, 31(12), 1729–1734.

Cevese, A., Grasso, R., Poltronieri, R., & Schena, F. (1995). Vascular resistance and arterial pressure low-frequency oscillations in the anesthetized dog. American Journal Physiology, 268(1), 7–16.

Chowdhary, S., Ng, G. A., Nuttall, S. L., Coote, J. H., Ross, H. F., & Townend, J. N. (2002). Nitric oxide and cardiac parasympathetic control in human heart failure. Clinical Science (London), 102(4), 397–402.

Cooley, R. L., Montano, N., & Cogliati, C. (1998). Evidence for a central origin of low-frequency oscillation in RR-interval variability. Circulation, 98, 556–561.

Coverdale, N. S., Badrov, M. B., & Shoemaker, J. K. (2016). Impact of age on cerebrovascular dilation versus reactivity to hypercapnia. Journal of Celebral Blood Flow and Metabolism, 37(1), 344–355.

Curley, G., Kavanagh, B. P., & Laffey, J. G. (2010). Hypocapnia and the injured brain: More harm than benefit. Critical Care Medicine, 38(5), 1348–1359.

Dabire, H., Lacolley, P., Chaouche-Teyara, K., Fournier, B., & Safar, M. E. (2002). Relationship between arterial distensibility and low-frequency power spectrum of blood pressure in spontaneously hypertensive rats. Journal of Cardiovascular Pharmacology, 39(1), 98–106.

Dishman, R. K., Nakamura, Y., Garsia, M. E., Thompson, R. W., Dunn, A. L., & Blair, S. N. (2000). Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. International Journal of Psychophy­siology, 37(2), 121–133.

Djomin, D. B., & Poskotinova, L. V. (2017). Analiz kolichestvennyh harakteristik EEG pri intensivnom ciklicheskom dyhanii s kontrolem urovnja gipokapnii [Analysis of the quantitative characteristics of the EEG in intensive cyclic respiration with control of the level of hypocapnia]. Vestnik Klinicheskoj Nejrofiziologii, 8, 17–18 (in Russian).

Drogovoz, S. M., Shtrigol’, S. J., Kononenko, A. V., Zupanec, M. V., & Shtroblja, A. L. (2016). Mehanizm dejstvija karboksiterapii [The mechanism of action of carboxytherapy]. Farmakologіja ta Lіkars’ka Toksykologіja, 6(51), 12–18 (in Russian).

Drogovoz, S. M., Shtrygol’, S. J., Kononenko, A. V., Zupanec, M. V., Shtrigol’, C. J., & Zupanec’, M. V. (2017). Farmakologicheskoe obosnovanie karboksiterapii (CO2-terapii) [Pharmacological rationale for carboxytherapy (CO2 therapy)]. Farmakologіja ta Lіkars’ka Toksykologіja, 52, 73–77 (in Russian).

Drogovoz, S. M., Shtrygol’, S. J., Zupanec, M. V., Kononenko, A. V., & Levinskaja, E. V. (2016). Fiziologicheskie svojstva CO2 – obosnovanie unikal’nosti karboksiterapii [Physiological properties of CO2 – justification for the uniqueness of carboxytherapy]. Medichna ta Klіnіchna Hіmіja, 18(1), 112–116 (in Russian).

Eckberg, D. L. (1997). Sympathovagal balance. A critical appraisal. Circulation, 96, 3224–3232.

Eckberg, D. L., Cooke, W. H., Diedrich, A., Biaggioni, I., Buckey, J. C. Jr., Pawelczyk, J. A., Ertl, A. C., Cox, J. F., Kuusela, T. A., Tahvanainen, K. U., Mano, T., Iwase, S., Baisch, F. J., Levine, B. D., Adams-Huet, B., Robertson, D., & Blomqvist, C. G. (2018). Respiratory modulation of human autonomic function on Earth. Journal Physiology, 594(19), 5611–5627.

Falquetto, B., Oliveira, L. M., Takakura, A. C., Mulkey, D. K., & Moreira, T. S. (2018). Inhibition of the hypercapnic ventilatory response by adenosine in the retrotrapezoid nucleus in awake rats. Neuropharmacology, 138, 47–56.

Fischer, K., Guensch, D. P., Shie, N., Lebel, J., & Friedrich, M. G. (2016). Breathing maneuvers as a vasoactive stimulus for detecting inducible myocardial ischemia – an experimental cardiovascular magnetic resonance study. PLoS One, 11(10), e0164524.

Fischer, K., Yamaji, K., Luescher, S., Ueki, Y., Jung, B., von Tengg-Kobligk, H., Windecker, S., Friedrich, M. G., Eberle, B., & Guensch, D. P. (2018). Feasibility of cardiovascular magnetic resonance to detect oxygenation deficits in patients with multi-vessel coronary artery disease triggered by breathing maneuvers. Journal of Cardiovascular Magnetic Resonance, 20(1), 31.

Foster, G. T., Vaziri, N. D., & Sassoon, C. S. (2001). Respiratory alkalosis. Respiratory Care, 46(4), 384–391.

Gavrisjuk, V. K. (2006). Hronicheskoe legochnoe serdce: Mehanizmy patogeneza i principy terapii [Chronic pulmonary heart: Mechanisms of pathogenesis and principles of therapy]. Ukrainskyi Pulmonohichnyi Zhurnal, 4, 6–13 (in Russian).

Gnezdickij, V. V., Koshurnikova, E. E., Korepina, O. S., & Skomorohov, A. A. (2010). Analiz reakcij JeJeG na giperventiljaciju (trendy i dipol’naja lokalizacija): Problemy interpretacii [Analysis of EEG reactions to hyperventilation (trends and dipole localization): Interpretation problems]. Funkcio­nal’naja Diagnostika, 1, 3–25 (in Russian).

Grishin, O. V., Averko, N. N., Zhilina, I. G., Grishin, V. G., & Kovalenko, J. V. (2012). Psihogennaja odyshka i gipokapnija u bol’nyh ishemicheskoj bolezn’ju serdca do i posle koronarnogo shuntirovanija [Psychogenic dyspnea and hypocapnia in patients with coronary heart disease before and after coronary artery bypass grafting]. Angiologija i Sosudistaja Hirurgija. Patologija Krovoobrashhenija i Kardiohirurgija, 1, 39–42 (in Russian).

Grishin, O. V., Basalaeva, S. V., Umanceva, N. D., Ustjuzhaninova, N. V., Gri­shin, V. G., & Mitrofanov, I. M. (2011). Uvelichenie skorosti vydelenija СO2 v pokoe pri kratkovremennoj gipoksii u zdorovyh ljudej [An increase in the rate of release of CO2 at rest with short-term hypoxia in healthy people]. Fiziologija Cheloveka, 37(5), 77–83 (in Russian).

Guyenet, P. G., Stornetta, R. L., Abbott, S. B., Depuy, S. D., & Kanbar, R. (2012). The retrotrapezoid nucleus and breathing. Arterial Chemoreception, 758, 115–122.

Guzzetti, S., Cogliati, C., Broggi, C., Carozzi, C., Cardirole, D., Lombardi, F., & Malliani, A. (1994). Influences of neural mechanisms on heart period and arterial pressure variabilities in quadriplegic patients. American Journal of Physiology, 266, 1112–1120.

Hajutin, V. M., & Lukoshkova, E. V. (1999). Spektral’nyj analiz kolebanij chastoty serdcebienij: Fiziologicheskie osnovy i oslozhnjajushhie ego javlenija [Spectral analysis of heart rate fluctuations: Physiological bases and its complicating phenomena]. Rossijskij Fiziologichnij Zhurnal, 85(7), 893–909 (in Russian).

Harrison, J. M., Gilchrist, P. T., Corovic, T. S., Bogetti, C., Song, Y., Bacon, S. L., & Ditto, B. (2017). Respiratory and hemodynamic contributions to emotion-related pre-syncopal vasovagal symptoms. Biological Psychology, 127, 46–52.

Hirayanagi, K., Iwasaki, K., Sasaki, T., Kinugasa, H., Miyamoto, A., & Yajima, K. (1999). Sensitivity analyses of heart rate variability variables by incremental, passive head-up tilt. Uchu Koku Kankyo Igaku, 36(2), 67–74.

Hoiland, R. L., Fisher, J. A., & Ainslie, P. N. (2019). Regulation of the cerebral circulation by arterial carbon dioxide. Comprehensive Physiology, 9(3), 1101–1154.

Il'in, V. N., Batyrbekova, L. M., Kurdanova, M. H., & Kurdanov, H. A. (2003). Ritmokardiograficheskie metody ocenki funkcional’nogo sostojanija organizma cheloveka [Rhythmocardiographic methods for assessing the functional state of the human body]. Servis-Shkola, Stavropol (in Russian).

Inoue, K., Miyake, S., Kumashiro, M., Ogata, H., & Yoshimura, O. (1990). Power spectral analysis of heart rate variability in traumatic quadriplegic humans. American Journal of Physiology, 258, 1722–1726.

Introna, N., Yodlowski, E., Pruett, J., Montano, N., Porta, A., & Crumrine, R. (1995). Sympathovagal effects of spinal anesthesia in heart rate variability analysis. Anesthesia and Analgesia, 80, 313–321.

Jansen, B. J. A., Oosting, J., & Slaff, D. W. (1995). Hemodynamic basis of oscillation in systemic arterial pressure in conscious rat. American Journal of Physiology, 266(1), 62–71.

Kamath, M. V., & Fallen, E. L. (1993). Power spectral analysis of heart rate variability: A noninvasive signature of cardiac autonomic function. Critical Reviews in Biomedical Engineering, 21, 245–311.

Kavanagh, B. (2002). Normocapnia vs hypercapnia. Minerva Anestesiologica, 68(5), 346–350.

Khiat, L., Gustavo, A., & Leibaschoff, H. (2018). Clinical prospective study on the use of subcutaneous carboxytherapy in the treatment of diabetic foot ulcer. Surgical Technology International, 32, 1–10.

Kingwell, B. A., Thompson, J. M., Kaye, D. M., McPherson, G. A., Jennings, G. L., & Esler, M. D. (1994). Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation, 90, 234–240.

Klabunde, R. E. (2012). Neurohumoral control of the heart and circulation. Cardiovascular Physiology Concepts. 2nd edition. Lippincott Williams and Wilkins, Baltimore. Pp. 136–137.

Koh, J., Brown, T. E., Beightol, L. A., Ha, O. Y., & Eckberg, D. L. (1994). Human autonomic rhythms: Vagal cardiac mechanisms in tetraplegic subjects. The Journal of Physiology (London), 474, 483–495.

Kovalenko, S. A., & Kudii, L. I. (2006). Heart rate variability in subjects with different respiratory rates. Human Physiology, 32, 742–743.

Kovalenko, S. O. (2005). Analiz variabel’nosti sercevogo rytmu za dopomogoju metodu mediannoi’ spektrogramy [Analysis of heart rate variability using the median spectrogram method]. Fiziologichnyj Zhurnal, 51(3), 92–95.

Kubichek, W. G., Patterson, R. P., & Wetsol, D. A. (1970). Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Annals of the New York Academy of Sciences, 2, 724–732.

Kulikov, V. P., Kuznecova, D. V., & Zarja, A. N. (2017). Cerebrovaskuljarnaja i kardiovaskuljarnaja CO2 reaktivnost’ v patogeneze arterial’noj gipertenzii [Cerebrovascular and cardiovascular CO2 reactivity in the pathogenesis of arterial hypertension]. Arterial’naja Gipertenzija, 23(5), 433–446 (in Russian).

Lafave, H. C., Zouboules, S. M., James, M. A., Purdy, G. M., Rees, J. L., Steinback, C. D., Ondrus, P., Brutsaert, T. D., Nysten, H. E., Nysten, C. E., Hoiland, R. L., Sherpa, M. T., & Day, T. A. (2019). Steady-state cerebral blood flow regulation at altitude: Interaction between oxygen and carbon dioxide. European Journal of Applied Physiology, 119(11–12), 2529–2544.

Lakhno, I. V. (2017). The hemodynamic repercussions of the autonomic modulations in growth-restricted fetuses. Alexandria Journal of Medicine, 53(4), 333–336.

Leacy, J. K., Zouboules, S. M., Mann, C. R., Peltonen, J. D. B., Saran, G., Nysten, C. E., Nysten, H. E., Brutsaert, T. D., O’Halloran, K. D., Sherpa, M. T., & Day, T. A. (2018). Neurovascular coupling remains intact during incremental ascent to high altitude (4240 m) in acclimatized healthy volunteers. Frontiers in Physiology, 28(9), 691.

Linden, D., & Diehl, R. R. (1996). Comparison of standard autonomic tests and power spectral analysis in normal adults. Muscle and Nerve, 19, 556–562.

Liu, H., Yambe, T., Sasada, H., Nanka, S., Tanaka, A., Nagatomi, R., & Nitta, S. (2004). Comparison of heart rate variability and stroke volume variability. Autonomic Neuroscience: Basic and Clinical, 116, 69–75.

Lucini, D., Mela, G. S., Malliani, A., & Pagani, M. (1997). Evidence of increased sympathetic vasomotor drive with shorter acting dihydropyridine calcium channel antogonist in human hypertension: A study using spectral analysis of RR interval and systolic arterial pressure variability. Journal of Cardiovascular Pharmacology, 29, 676–683.

Lutsenko, O. I., & Kovalenko, S. O. (2017). Blood pressure and hemodynamics: Mayer waves in different phases of ovarian and menstrual cycle in women. Physiological Research, 2, 235–240.

Lyzogub, V. G., Savchenko, A. V., Zapeka, J. S., & Baytser, M. S. (2015). Rol’ vuglekyslogo gazu v organizmi ljudyny [The role of carbon dioxide in the human body]. Pershyj Nezalezhnyj Naukovyj Visnyk, 4, 29–32 (in Russian).

Madureira, J., Castro, P., & Azevedo, E. (2017). Demographic and systemic hemodynamic influences in mechanisms of cerebrovascular regulation in healthy adults. Journal of Stroke and Cerebrovascular Diseases, 26(3), 500–508.

Makarenkova, E. A., Malahov, M. V., Mel’nikov, A. A., & Vikulov, A. D. (2012). Sravnitel’nyj analiz vlijanija proizvol’noj giperventiljacii i fizicheskoj nagruzki na funkciju ravnovesija cheloveka [Comparative analysis of the effect of voluntary hyperventilation and physical activity on the human equilibrium function]. Jaroslavskij Pedagogicheskij Vestnik, 3(4), 145–148 (in Russian).

Malik, M., Hnatkova, K., Huikuri, H. V., Lombardi, F., Schmidt, G., & Zabel, M. (2019). CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsiveness. Journal of Physiology, 597(10), 2595–2598.

Malliani, A. (1996). Heart rate variability: A challenge for a new way of thinking. Journal of Cardiac Failure, 2, 197–202.

Malliani, A. (1998). Fiziologicheskaja interpretacija spektral’nyh komponentov va­riabel’nosti serdechnogo ritma (HRV) [Physiological interpretation of spectral components of heart rate variability (HRV)]. Vestnik Aritmologii, 3, 47–57 (in Russian).

Malliani, A. (1999). The pattern of sympathovagal balance explored in the frequency domain. News of Physiological Sciences, 14, 111–117.

Malliani, A., Pagani, M., & Lombardi, F. (1994). Physiology and clinical implications of variability of cardiovascular parameters with focus on heart rate and blood pressure. American Journal of Cardiology, 73(7), 3–9.

Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 1482–1492.

Martinmaki, K., Rusko, H., Kooistra, L., Kettunen, J., & Saalasti, S. (2006). Intraindividual validation of heart rate variability indexes to measure vagal effects on hearts. American Journal of Physiology / Heart and Circulatory Physio­logy, 290(2), 640–647.

Meng, L., & Gelb, A. W. (2015). Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology, 122(1), 196–205.

Miller, K. B., Howery, A. J., Harvey, R. E., Eldridge, M. W., & Barnes, J. N. (2018). Cerebrovascular reactivity and central arterial stiffness in habitually exercising healthy adults. Frontiers in Physiology, 9, 1096.

Mishustin, J. N. (2007). Vyhod iz tupika. Oshibki mediciny ispravljaet fiziologija [Breaking the deadlock. Errors of medicine are corrected by physiology]. Samarskij Dom Pechati, Samara (in Russian).

Montano, N., Riscone, T. G., Porta, A., Lombardi, F., Pagani, M., & Malliani, A. (1994). Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation, 90, 1826–1831.

Morgan, W. P. (1983). Hyperventilation syndrome: A review. American Industrial Hygiene Association Journal, 44(9), 685–689.

Munakata, M., Kameyama, J., Nunokawa, T., Ito, N., & Yoshinaga, K. (2001). Altered Mayer wave and baroreflex in high spinal cord injury. American Journal of Hypertension, 14(2), 141–148.

Mutch, W. A. C., El-Gabalawy, R., Girling, L., Kilborn, K., & Jacobsohn, E. (2018). End-Tidal hypocapnia under anesthesia predicts postoperative delirium. Frontiers in Neurology, 9, 678.

Myers, C. W., Cohen, M. A., Eckberg, D. L., & Taylor, J. A. (2001). A model for the genesis of arterial pressure Mayer waves from heart rate and sympathetic activity. Autonomic Neuroscience: Basic and Clinical, 91(1–2), 62–75.

Nagibovich, O. A., Uhovskij, D. M., Zhekalov, A. N., Tkachuk, N. A., Arzhavkina, L. G., Bogdanova, E. G., Murzina, E. V., & Belikova T. M. (2016). Mehanizmy gipoksii v Arkticheskoj zone Rossijskoj Federacii [Hypoxia mechanisms in the Arctic zone of the Russian Federation]. Vestnik Rossijskoj Voenno-Medicinskoj Akademii, 54, 202–205 (in Russian).

Novak, V., Novak, P., de Champlain, J., & Nadeau, R. (1994). Altered cardiorespiratory transfer in hypertension. Hypertension, 23, 104–113.

Pagani, M., & Malliani, A. (2000). Interpreting oscillation of muscle sympathetic ner­ve activity and heart rate variability. Journal of Hypertension, 18, 1709–1719.

Panina, M. I. (2003). Patofiziologicheskie aspekty giperventiljacii i giperventiljacionnogo sindroma [Pathophysiological aspects of hyperventilation and hyperventilation syndrome]. Kazanskij Medicinskij Zhurnal, 84(4), 288–293. (in Russian).

Pomeranz, M., Macaulay, R. J. B., & Caudill, M. A. (1985). Assessment of ana­tomic function in humans by heart rate spectral analysis. American Journal of Physiology, 248, 151–153.

Ponimasov, O. E. (2016). Jeksternal’nye projavlenija gipokapnii pri podvodnom ny­rjanii bez dyhatel’nogo apparata [External manifestations of hypocapnia with underwater diving without a breathing apparatus]. Innovacionnaja Nauka: Pro­shloe, Nastojashhee, Budushhee, 4, 145–147 (in Russian).

Portier, H., Lonisy, F., Lande, D., Berthelot, M., & Guezennee, C. Y. (2001). Intense endurance training on heart rate and blood pressure variability in runners. Medicine and Science in Sports and Exercise, 33(7), 1120–1125.

Raamat, R., Jagomägi, K., Talts, J., Toska, K., & Walløe, L. (2003). Beat-to-beat measurement of the finger arterial pressure pulse shape index at rest and during exercise. Clinical Physiology and Functional Imaging, 23(2), 87–91.

Rimoldi, O., Pierimi, S., Ferrari, A., Cerutti, S., Pagani, M., & Malliani, A. (1990). Analysis of short-term oscillation of R-R and arterial pressure in conscious dogs. American Journal of Physiology, 258, 967–976.

Ruttkaj-Nedecki, I. (2001). Problemy jelektrokardiologicheskoj ocenki vlijanija vegetativnoj nervnoj sitemy na serdce [Problems of electrocardiological evaluation of the influence of the autonomic nervous system on the heart]. Vestnik Aritmologii, 22, 56–60 (in Russian).

Salinet, A. S. M., Minhas, J. S., Panerai, R. B., Bor-Seng-Shu, E., & Robinson, T. G. (2019). Do acute stroke patients develop hypocapnia? A systematic review and meta-analysis. Journal of the Neurological Sciences, 402, 30–39.

Sanderson, J. E., Yeung, L. Y., Yeung, D. T., Kay, R. L., Tomlinson, B., Critchley, J. A., Woo, K. S., & Bernardi, L. (1996). Impact of changes in respiratory frequency and posture on power spectral analysis of heart rate and systolic blood pressure variability in normal subjects and patients with heart failure. Clinical Scienses (London), 91(1), 35–43.

Sato, K., Sadamoto, T., Hirasawa, A., Oue, A., Subudhi, A. W., Miyazawa, T., & Ogoh, S. (2012). Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries. Journal of Physiology, 590(14), 3277–3290.

Semenov, A. M. (2016). Osoblivostі reguljacії funkcіonal’nogo stanu ljudini dihal’­noju gіmnastikoju ta masazhem [Features of regulation of the functional state of the person by respiratory gymnastics and massage]. Naukovij Chasopis NPU Іmenі M. P. Dragomanova, 71, 303–306 (in Russian).

Sesay, M., Tanzin-Fin, P., Gosse, P., Ballanger, P., & Maurette, P. (2008). Real-time heart rate variability and its correlation with plasma cathecholamines during laparoscopic adrenal pheochromocytoma surgery. Anesthisia and Analgesia, 106(1), 164–170.

Shaov, M. T., Shaova, Z. A., & Pshikova, O. V. (2009). Izmenenie koncentracii uglekislogo gaza v krovi cheloveka pod vozdejstviem jelektroakusticheskih signalov nervnyh kletok [Change in the concentration of carbon dioxide in the blood of a person under the influence of electro-acoustic signals of nerve cells]. Jug Rossii: Jekologija, Razvitie, 1, 136–141 (in Russian).

Shejh-Zade, J. R., Skibickij, V. V., Kathanov, A. M., Shejh-Zade, K. J., Suhomlinov, V. V., Kudrjashov, E. A., Cherednik, N. L., Zhukova, E. V., Kablov, R. N., & Zuzik, J. A. (2001). Al’ternativnyj podhod k ocenke variabel’nosti serdechnogo ritma [An alternative approach to assessing heart rate variability]. Vestnik Aritmologii, 22, 49–55 (in Russian).

Shoemaker, J. K., O’Leary, D. D., & Hughson, R. L. (2001). PET CO2 inversely affects MSNA response to orthostatic stress. Heat and circulatory physiology, 281(3), Н1040–Н1046.

Shurygin, I. A. (2000). Monitoring dyhanija: Pul’soksimetrija, kapnografija, oksi­metrija [Respiratory monitoring: Pulse oximetry, capnography, oximetry]. Binom, Moscow (in Russian).

Sigurdsson, M. I., Waldron, N. H., Bortsov, A. V., Smith, S. B., & Maixner, W. (2018). Genomics of cardiovascular measures of autonomic tone. Journal of Cardiovascular Pharmacology, 71(3), 180–191.

Singh, U. P. (2017). Еvidence-based role of hypercapnia and exhalation phase in vagus nerve stimulation: Insights into hypercapnic yoga breathing exercises. Journal of Yoga and Physical Therapy, 7(3), 1000270–1000276.

Skyba, O., Pshenychna, L., & Ustymenko-Kosorich, O. (2017). The features of vegetative regulation of the heart rate in athletes with different levels of perception and processing of visual information. Regulatory Mechanisms in Biosystems, 8(2), 239–243.

Smielewski, P., Steiner, L., Puppo, C., Budohoski, K., Varsos, G. V., & Czosnyka, M. (2018). Effect of mild hypocapnia on critical closing pressure and other mechanoelastic parameters of the cerebrospinal system. Acta Neurochirgica Supplement, 126, 139–142.

Solov’eva, A. V., Bjalovskij, J. J., & Rakita, D. R. (2009). Osobennosti legochnogo gazoobmena pri metabolicheskom syndrome [Features of pulmonary gas exchange in the metabolic syndrome]. Doktor Ru, 79, 90–94 (in Russian).

Spitsin, A. P., Pershina, T. A., & Tsarev, Y. K. (2018). Peculiarities of hemodyna­mics and heart rhythm in males with increased arterial pressure depending on initial vegetative tone and age. Advences in Gerontology, 31(2), 260–265.

Stocchetti, N., Maas, A. I., Chieregato, A., & Van Der Plas, A. A. (2005). Hyperventilation in head injury. Chest, 127(5), 1812–1827.

Sullivan, G. M., Kent, J. M., Kleber, M., Martinez, J. M., Yeragani, V. K., & Gor­man, J. M. (2004). Effects of hyperventilation on heart rate and QT variability in panic disorder pre- and post-treatment. Psychiatry Research, 125(1), 29–39.

Szabo, K., Lako, E., Juhasz, T., Rosengarten, B., Csiba, L., & Olah, L. (2011). Hypocapnia induced vasoconstriction significantly inhibits the neurovascular coupling in humans. Journal of the Neurological Sciences, 309, 58–62.

Tamisier, R., Weiss, J. W., & Pépin, J. L. (2018). Sleep biology up dates: Hemodynamic and autonomic control in sleep disorders. Metabolism, 84, 3–10.

Tomimatsu, T., Kakigano, A., Mimura, K., Kanayama, T., Koyama, S., Fujita, S., & Kimura, T. (2012). Maternal hyperventilation during labor revisited: Its effects on fetal oxygenation. Reproductive Sciences, 19(11), 1169–1174.

Tsuji, B., Filingeri, D., Honda, Y., Eguchi, T., Fujii, N., Kondo, N., & Nishiyasu, T. (2018). Effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans. Journal of Applied Physiology, 124(1), 225–233.

Van Diest, I., Verstappen, K., Aubert, A. E., Widjaja, D., Vansteenwegen, D., & Vlemincx, E. (2014). Inhalation/exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation. Applied Psychophysiology and Biofeedback, 39(3–4), 171–180.

Wagner, C. D., & Persson, P. B. (1994). Two ranges in blood pressure power spectrum with different 1/f characteristics. American Journal of Physiology, 267(2), 449–454.

Wiesenack, C., Fiegl, C., Keyser, A., Prasser, C., & Keyl, C. (2005). Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients. European Journal of Anaesthesiology, 22, 658–665.

Wilder, J. (1957). The law of initial value in neurology and psychiatry: Facts and problems. The Journal of Nervous and Mental Disease, 125(1), 73–86.

Willie, C. K., Macleod, D. B., Shaw, A. D., Smith, K. J., Tzeng, Y. C., Eves, N. D., Ikeda, K., Graham, J., Lewis, N. C., Day, T. A., & Ainslie, P. N. (2012). Regional brain blood flow in man during acute changes in arterial blood gases. Journal of Physiology, 590(14), 3261–3275.

Willie, C. K., MacLeod, D. B., Smith, K. J., Lewis, N. C., Foster, G. E., Ikeda, K., Hoiland, R. L., & Ainslie, P. N. (2015). The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. Journal of Cerebral Blood Flow and Metabolism, 35(5), 873–881.

Zav’jalova, O. R. (2011). Zastosuvannja vuglekislogo gazu v medichnij reabilitacii’ [The use of carbon dioxide in medical rehabilitation]. Medichna Gidrologija ta Reabilitacija, 9(1), 72–83 (in Ukrainian).

Zouboules, S. M., Lafave, H. C., O’Halloran, K. D., Brutsaert, T. D., Nysten, H. E., Nysten, C. E., Steinback, C. D., Sherpa, M. T., & Day, T. A. (2018). Renal reactivity: Acid-base compensation during incremental ascent to high altitude. Journal of Physiology, 596(24), 6191–6203.

How to Cite
Zavhorodnia, V. A., Androshchuk, O. I., Kharchenko, T. H., Kudii, L. I., & Kovalenko, S. O. (2020). Haemodynamic effects of hyperventilation on healthy men with different levels of autonomic tone. Regulatory Mechanisms in Biosystems, 11(1), 13-21. https://doi.org/10.15421/022002