Water-soluble C60 fullerene ameliorates astroglial reactivity and TNFa production in retina of diabetic rats

Keywords: diabetic retinopathy; S100β; poly-(ADP-ribose) polymerase (PARP); TNFα; hydrated С60 fullerene.

Abstract

The complications of both first and second types of diabetes mellitus patients are important cause of decline in quality of life and mortality worldwide. Diabetic retinopathy (DR) is a widespread complication that affects almost 60% of patients with prolonged (at least 10–15 years) diabetes. The critical role of glial cells has been shown in retinopathy initiation in the last decades. Furthermore, glial reactivity and inflammation could be key players in early pathogenesis of DR. Despite the large amount of research data, the approaches of effective DR therapy remain unclear. The progress of DR is accompanied by pro-inflammatory and pro-oxidative changes in retinal cells including astrocytes and Muller cells. Glial reactivity is a key pathogenetic factor of various disorders in neural tissue. Fullerene C60 nanoparticles were confirmed for both antioxidant and anti-inflammatory capability. In the presented study glioprotective efficacy of water-soluble hydrated fullerene C60 (C60HyFn) was tested in a STZ-diabetes model during 12 weeks. Exposure of the STZ-diabetic rat group to C60HyFn ameliorated the astrocyte reactivity which was determined via S100β and PARP1 overexpression. Moreover, C60HyFn induced the decrease of TNFα production in the retina of STZ-diabetic rats. By contrast, the treatment with C60HyFn of the normal control rat group didn’t change the content of all abovementioned markers of astrogliosis and inflammation. Thus, diabetes-induced abnormalities in the retina were suppressed via the anti-oxidant, anti-inflammatory and glioprotective effects of C60HyFn at low doses. The presented results demonstrate that C60HyFn can ensure viability of retinal cells viability through glioprotective effect and could be a new therapeutic nano-strategy of DR treatment.

References

Abu El-Asrar, A. M., Nawaz, M. I., De Hertogh, G., Alam, K., Siddiquei, M. M., Van den Eynde, K., Mousa, A., Mohammad, G., Geboes, K., & Opdenakker, G. (2014). S100A4 is upregulated in proliferative diabetic retinopathy and correlates with markers of angiogenesis and fibrogenesis. Molecular Vision, 20, 1209–1224.

Ajlan, R. S., Silva, P. S., & Sun, J. K. (2016). Vascular endothelial growth factor and diabetic retinal disease. Seminars in Ophthalmology, 31, 40–48.

Amato, R., Dal Monte, M., Lulli, M., Raffa, V., & Casini, G. (2018). Nanoparticle-mediated delivery of neuroprotective substances for the treatment of diabetic retinopathy. Current Neuropharmacology, 16(7), 993–1003.

Andreev, S., Purgina, D., Struchkova, I., Kamyshnikov, O., Nikonova, A., & Khaitov, M. (2016). Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. Journal of Nanobiotechnology, 14(1), 140–148.

Asnaghi, V., Gerhardinger, C., Hoehn, T., Adeboje, A., & Lorenzi, M. (2003). A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes, 52(2), 506–511.

Bai, P. (2015). Biology of poly(ADP-ribose) polymerases: The factotums of cell maintenance. Molecular Cell, 58(6), 947–958.

Bai, P., Nagy, L., Fodor, T., Liaudet, L., & Pacher, P. (2015). Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends in Endocrinology and Metabolism, 26(2), 75–83.

Bai, W., Chen, Y., & Gao, A. (2015). Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles. International Journal of Nanomedicine, 10(1), 5561–5569.

Bal, R., Turk, G., Tuzcu, M., Yilmaz, O., Ozercan, I., Kuloglu, T., Gur, S., Nedzvetsky, V. S., Tykhomyrov, A. A., Andrievsky, G. V., Baydas, G., & Naziroglu, M. (2011). Protective effects of nanostructures of hydrated C(60) fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology, 282(3), 69–81.

Barber, A. J. (2003). A new view of diabetic retinopathy: A neurodegenerative disease of the eye. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(2), 283–290.

Bianchi, R., Kastrisianaki, E., Giambanco, I., & Donato, R. (2011). S100B protein stimulates microglia migration via RAGE-dependent upregulation of chemokine expression and release. Journal of Biological Chemistry, 286(9), 7214–7226.

Bock, F. J., & Chang, P. (2016). New directions in poly(ADP-ribose) polymerase biology. The FEBS Journal, 283(22), 4017–4031.

Chavala, S. H., Kim, Y., Tudisco, L., Cicatiello, V., Milde, T., Kerur, N., Claros, N., Yanni, S., Guaiquil, V. H., Hauswirth, W. W, Penn, J. S., Rafii, S., De Falco, S., Lee, T. C., & Ambati, J. (2007). Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Experimental Diabetes Research, 5, 95–103.

Coorey, N. J., Shen, W., Chung, S. H., Zhu, L., & Gillies, M. C. (2012). The role of glia in retinal vascular disease. Clinical and Experimental Optometry, 95(3), 266–281.

Davey, G. E., Murmann, P., & Heizmann, C. W. (2001) Intracellular Ca2+ and Zn2+ levels regulate the alternative cell density-dependent secretion of S100B in human glioblastoma cells. Journal of Biological Chemistry, 276(33), 30819–30826.

Dellinger, A. L., Cunin, P., Lee, D., Kung, A. L., Brooks, D. B., Zhou, Z., Nigrovic, P. A., & Kepley, C. L. (2015). Inhibition of inflammatory arthritis using fullerene nanomaterials. PLoS One, 10(4), e0126290.

Devi, T. S., Lee, I., Hüttemann, M., Kumar, A., Nantwi, K. D., & Singh, L. P. (2012). TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: Implications for diabetic retinopathy. Experimental Diabetes Research, 43(8), 238.

Donato, R., Sorci, G., Riuzzi, F., Arcuri, C., Bianchi, R., Brozzi, F., Tubaro, C., & Giambanco, I. (2009). S100B’s double life: Intracellular regulator and extracellular signal. Biochimica et Biophysica Acta, 1793(6), 1008–1022.

Duraisamy, A. J., Mishra, M., Kowluru, A., & Kowluru, R. A. (2018). Epigenetics and regulation of oxidative stress in diabetic retinopathy. Investigative Ophthalmology and Visual Science, 59(12), 4831–4840.

Ellis, E. F., Willoughby, K. A., Sparks, S. A., & Chen, T. (2007). S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. Journal Neurochemistry, 101, 1463–1470.

Feenstra, D. J., Yego, E. C., & Mohr, S. (2013). Modes of retinal cell death in diabetic retinopathy. Journal of Clinical and Experimental Ophthalmology, 4(5), 298.

Flaxman, S. R., Bourne, R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J. H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G. A., Tahhan, N., Wong, T. Y., & Taylor, H. R. (2017). Global causes of blindness and distance vision impairment 1990-2020: A systematic review and meta-analysis. Lancet Glob Health, 12(5), 1221–1234.

Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137–188.

Frank, R. N. (2004). Diabetic retinopathy. The New England Journal of Medicine, 350(1), 48–58.

Frank, R. N. (2009). Treating diabetic retinopathy by inhibiting growth factor pathways. Current Opinion in Investigational Drugs, 10(4), 327–335.

Fukuda, M., Nakanishi, Y., Fuse, M., Yokoi, N., Hamada, Y., Fukagawa, M., Negi, A., & Nakamura, M. (2010). Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Experimental Eye Research, 90(1), 17–25.

Gerlach, R., Demel, G., Konig, H. G., Gross, U., Prehn, J. H., Raabe, A., Seifert, V., & Kogel, D. (2006). Active secretion of S100B from astrocytes during metabolic stress. Neuroscience, 141(4), 1697–1701.

Gharbi, N., Pressac, M., Hadchouel, M., Szwarc, H., Wilson, S. R., & Moussa, F. (2005). [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Letters, 12(5), 2578–2585.

Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.

Grigsby, J. G., Allen, D. M., Ferrigno, A. S., Vellanki, S., Pouw, C. E., Hejny, W. A., & Tsin, A. T. (2017). Autocrine and paracrine secretion of vascular endothelial growth factor in the pre-hypoxic diabetic retina. Current Diabetes Reviews, 13(2), 161–174.

Guzyk, M. M., Tykhomyrov, A. A., Nedzvetsky, V. S., Prischepa, I. V., Grinenko, T. V., Yanitska, L. V., & Kuchmerovska, T. M. (2016). Poly(ADP-Ribose) polymerase-1 (PARP-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of diabetic rats. Neurochemical Research, 41(10), 2526–2537.

Hernandez, C., Dal Monte, M., Simo, R., & Casini, G. (2016). Neuroprotection as a therapeutic target for diabetic retinopathy. Journal of Diabetes Research, 9(5), 538–541.

Hodson, D. J., Mitchell, R. K., Bellomo, E. A., Sun, G., Vinet, L., Meda, P., Li, D., Li, W. H., Bugliani, M., Marchetti, P., Bosco, D., Piemonti, L., Johnson, P., Hughes, S. J., & Rutter, G. A. (2013). Lipotoxicity disrupts incretin-regulated human β cell connectivity. Journal of Clinical Investigation, 123(10), 4170–4181.

Hollborn, M., Chen, R., Wiedemann, P., Reichenbach, A., Bringmann, A., & Kohen, L. (2013). Cytotoxic effects of curcumin in human retinal pigment epithelial cells. PLoS One, 8(3), e00596603.

Jindal, V. (2015). Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Molecular Neurobiology, 51(3), 878–884.

Kern, T. S. (2007). Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Experimental Diabetes Research, 9(5), 103.

Kim, D., Kim, M. J., Lee, J. H., Im, J. O., Won, Y. J., Yoon, S. Y., & Hong, H. N. (2003). Concomitant distribution shift of glial GABA transporter and S100 calcium-binding proteins in the rat retina after kainate-induced excitotoxic injury. Neuroscience Letters, 353(1), 17–20.

Kovacs, K., Vaczy, A., Fekete, K., Kovari, P., Atlasz, T., Reglodi, D., Gabriel, R., Gallyas, F., & Sumegi, B. (2019). PARP inhibitor protects against chronic hypoxia/reoxygenation-induced retinal injury by regulation of MAPKs, HIF1α, Nrf2, and NFκB. Investigative Ophthalmology Visual Science, 60(5), 1478–1490.

Kowluru, R. A., & Kanwar, M. (2007). Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutrition and Metabolism, 8(4), 8–18.

Kowluru, R. A., Zhong, Q., Santos, J. M., Thandampallayam, M., Putt, D., & Gierhart, D. L. (2014). Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutrition and Metabolism, 11(1), 8.

Kumar, B., Gupta, S. K., Nag, T. C., Srivastava, S., Saxena, R., Jha, K. A., & Srinivasan, B. P. (2014). Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Experimental Eye Research, 125, 193–202.

Kumar, B., Gupta, S. K., Srinivasan, B. P., Nag, T. C., Srivastava, S., Saxena, R., & Jha, K. A. (2013). Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvascular Research, 87, 65–74.

Lenin, R., Thomas, S. M., & Gangaraju, R. (2018). Endothelial activation and oxidative stress in neurovascular defects of the retina. Current Pharmaceutical Design, 24(40), 4742–4754.

Li, W., Roy Choudhury, G., Winters, A., Prah, J., Lin, W., Liu, R., & Yang, S. H. (2018). Hyperglycemia alters astrocyte metabolism and inhibits astrocyte proliferation. Aging and Disease, 9(4), 674–684.

Luo, D. W., Zheng, Z., Wang, H., Fan, Y., Chen, F., Sun, Y., Wang, W. J., Sun, T., & Xu, X. (2015). UPP mediated diabetic retinopathy via ROS/PARP and NF-κB inflammatory factor pathways. Current Molecular Medicine, 15(8), 790–799.

Ly, A., Yee, P., Vessey, K. A., Phipps, J. A., Jobling, A. I., & Fletcher, E. L. (2011). Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Investigative Ophthalmology and Visual Science, 52(13), 9316–9326.

Mathiisen, T. M., Lehre, K. P., Danbolt, N. C., & Ottersen, O. P. (2010). The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia, 58(9), 1094–1103.

Mazzone, G. L., & Nistri, A. (2014). S100β as an early biomarker of excitotoxic damage in spinal cord organotypic cultures. Journal of Neurochemistry, 130(4), 598–604.

Michetti, F., Corvino, V., Geloso, M. C., Lattanzi, W., Bernardini, C., Serpero, L., & Gazzolo, D. (2012). The S100B protein in biological fluids: More than a lifelong biomarker of brain distress. Journal of Neurochemistry, 120, 644–659.

Nedzvetskii, V. S., Pryshchepa, I. V., Tykhomyrov, A. A., & Baydas, G. (2016). Inhibition of reactive gliosis in the retina of rats with streptozotocin-induced diabetes under the action of hydrated С60 fullerene. Neurophysiology, 48(2), 130–140.

Nedzvetsky, V., Andrievsky, G., Chachibaia, T., & Tykhomyrov, A. (2012). Differences in antioxidant/protective efficacy of hydrated C60 fullerene nanostructures in liver and brain of rats with streptozotocin-induced diabetes. Diabetes and Metabolism, 2012, 3–8.

Obrosova, I. G., Minchenko, A. G., Frank, R. N., Seigel, G. M., Zsengeller, Z., Pacher, P, Stevens, M. J., & Szabo, C. (2004). Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression. International Journal of Molecular Medicine, 14(1), 55–64.

Ola, M. S., Al-Dosari, D., & Alhomida, A. S. (2018). Role of oxidative stress in diabetic retinopathy and the beneficial effects of flavonoids. Current Pharmaceutical Design, 24(19), 2180–2187.

Ola, M. S., Nawaz, M. I., Siddiquei, M. M., Al-Amro, S., & &Abu El-Asrar, A. M. (2012). Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Journal of Diabetes and Complications, 26(1), 56–64.

Pacher, P., Liaudet, L., Soriano, F. G., Mabley, J. G., Szabo, E., & Szabo, C. (2002). The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes, 51(2), 514–521.

Pellerin, L. (2018). Neuroenergetics: Astrocytes have a sweet spot for glucose. Current Biology, 28(21), 1258–1260.

Priyadarsini, K. I. (2014). The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 19, 20091–20112.

Rothermundt, M., Peters, M., Prehn, J. H., & Arolt, V. (2003). S100B in brain damage and neurodegeneration. Microscopy Research and Technique, 60, 614–632.

Rungger-Brandle, E., Dosso, A. A., & Leuenberger, P. M. (2000). Glial reactivity, an early feature of diabetic retinopathy. Investigative Ophthalmology and Visual Science, 41(7), 1971–1980.

Sanchez-Chavez, G., Hernandez-Ramírez, E., Osorio-Paz, I., Hernandez-Espinosa, C., & Salceda, R. (2016). Potential role of endoplasmic reticulum stress in pathogenesis of diabetic retinopathy. Neurochemical Research, 41(5), 1098–1106.

Shershakova, N., Baraboshkina, E., Andreev, S., Purgina, D., Struchkova, I., Kamyshnikov, O., Nikonova, A., & Khaitov, M. (2016). Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. Journal of Nanobiotechnology, 14(1), 148.

Shin, E. S., Huang, Q., Gurel, Z., Sorenson, C. M., & Sheibani, N. (2014). High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress. PLoS One, 9(7), e0103148.

Sofroniew, M. V. (2014). Astrogliosis. Cold Spring Harbor Perspectives in Biology, 7(2), 420.

Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7–35.

Sorci, G., Bianchi, R., Riuzzi, F., Tubaro, C., Arcuri, C., Giambanco, I., & Donato, R. (2010). S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovascular Psychiatry and Neurology, 6(5), 64–81.

Soufi, F. G., Mohammad-Nejad, D., & Ahmadieh, H. (2012). Resveratrol improves diabetic retinopathy possibly through oxidative stress – nuclear factor κB – apoptosis pathway. Pharmacological Reports, 64(6), 1505–1514.

Spohn, P., Hirsch, C., Hasler, F., Bruinink, A., Krug, H. F., & Wick, P. (2009). C60 Fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environmental Pollution, 157(4), 1134–1139.

Subirada, P. V., Paz, M. C., Ridano, M. E., Lorenc, V. E., Vaglienti, M. V., Barcelona, P. F., Luna, J. D., & Sanchez, M. C. (2018). A journey into the retina: Müller glia commanding survival and death. European Journal Neuroscience, 47(12), 1429–1443.

Takada, H., Kokubo, K., Matsubayashi, K., & Oshima, T. (2006). Antioxidant activity of supramolecular water-soluble fullerenes evaluated by beta-carotene bleaching assay. Bioscience Biotechnology and Biochemistry, 70(12), 3088–3093.

Tang, J., & Kern, T. S. (2011). Inflammation in diabetic retinopathy. Progress in Retinal Eye Research, 30(5), 343–358.

Tang, K. S., Suh, S. W., Alano, C. C., Shao, Z., Hunt, W. T., Swanson, R. A., & Anderson, C. M. (2010). Astrocytic poly(ADP-ribose) polymerase-1 activation leads to bioenergetic depletion and inhibition of glutamate uptake capacity. Glia, 58(4), 446–457.

Tarr, J. M., Kaul, K., Chopra, M., Kohner, E. M., & Chibber, R. (2013). Pathophysiology of diabetic retinopathy. ISRN Ophthalmology, 34(3), 560.

Wang, D. D., & Bordey, A. (2008). The astrocyte odyssey. Progress in Neurobiology, 86(4), 342–367.

Wang, J., Li, G., Wang, Z., Zhang, X., Yao, L., Wang, F., Liu, S., Yin, J., Ling, E. A., Wang, L., & Hao, A. (2012). High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience, 202(27), 58–68.

Wang, P., Chen, F., Wang, W., & Zhang, X. D. (2019). Hydrogen sulfide attenuates high glucose-induced human retinal pigment epithelial cell inflammation by inhibiting ROS formation and NLRP3 inflammasome activation. Mediators of Inflammation, 89(8), 960.

Zheng, L., Szabo, C., & Kern T. S. (2004). Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes, 53(11), 2960–2967.

Zhong, Y., Li, J., Chen, Y., Wang, J. J., Ratan, R., & Zhang, S. X. (2012). Activation of endoplasmic reticulum stress by hyperglycemia is essential for Muller cell-derived inflammatory cytokine production in diabetes. Diabetes, 61(2), 492–504.

Zuo, Z. F., Zhang, Q., & Liu, X. Z. (2013). Protective effects of curcumin on retinal Muller cell in early diabetic rats. International Journal of Ophthalmology, 6(4), 422–424.

Published
2019-10-21
How to Cite
Nedzvetsky, V. S., Sukharenko, E. V., Baydas, G., & Andrievsky, G. V. (2019). Water-soluble C60 fullerene ameliorates astroglial reactivity and TNFa production in retina of diabetic rats . Regulatory Mechanisms in Biosystems, 10(4), 513-519. https://doi.org/10.15421/021975