Experimental study of tropism in cultivated canine coronavirus in the small intestine of puppies

Keywords: pathological anatomic dissection; histological changes; enterocytes; villi; inclusion bodies.

Abstract

The varying extents of natural disease induced by coronavirus in dogs are not completely clear because the pathogenesis of coronavirus enteritis is not studied sufficiently. In this study, based on the results of clinical, virological, morphological and histochemical studies, we determined the pathogenic role of coronavirus in infected dogs using experimental infection, per os, of isolated canine coronavirus (Nick) with titer of infectious activity equaling 4.8 ± 0.04 lg TCID50/cm, cultivated on heterologous cell cultures. This allowed us to determine, supplement, and generalize the data on pathogenesis of the disease and determine the histological changes in the small intestine, where the initial replication of the pathogen takes place. It was found that lesions and the pattern of the pathomorphological changes (destruction, necrosis and edema of the stroma of the villi, lysis of the cytoplasm, deformation of the enterocyte nuclei) in the small intestine of experimentally infected dogs depend on the development of the pathological process related not only to the changes in histoarchitectonics of the wall of the intestine, but also to tension of the histochemical statics, and obviously the dynamic of the cells (accumulation of the main and acidic proteins in enterocytes’ cytoplasm, hypersecretion of the mucus by goblet cells, decrease of Schiff iodine acid-positive substances in the enterocytes’ cytoplasm, formation of basophilous inclusion bodies), which leads to disorders in metabolic processes in the organism of infected dogs as a response to the virus infection. The examined dogs were found to have morphological changes in the small intestine similar to those in spontaneously infected animals. During the action of coronavirus, the contacts between the enterocytes become damaged, which leads to inhibition of the protective functions of the intestine. At the same time, the pathological process in the experimentally infected animals developed rapidly and had an acute course. Thus, coronavirus enteritis as a separate disease is practically unobserved in field conditions, which makes microscopic survey of the pathogenic impact of the latter on the organism of dogs impossible. Therefore, experimental mono-infection allows a detailed study to be conducted of pathomorphological changes of the initial place of the reproduction of the virus – the small intestine affected by coronavirus enteritis.

References

Buonavoglia, C., Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Castagnaro, M., & Tempesta, M. (2006). Canine coronavirus highly pathogenic for dogs. Emerging Infectious Diseases, 12(3), 492–496.

Caddy, S. L. (2018). New viruses associated with canine gastroenteritis. Veterinary, 232, 57–64.

Decaro, N., Campolo, M., Lorusso, A., Desario, C., Mari, V., Colaianni, M., L., Elia, G., Martella, V., & Buonavoglia, C. (2008). Experimental infection of dogs with a novel strain of canine coronavirus causing systemic disease and lymphopenia. Veterinary Microbiology, 128, 253–260.

Decaro, N., Cordonnier, N., Demeter, Z., Egberink, H., Elia, G., Grellet, A., Poder, S., Mari, V., Martella, V., Ntafis, V., Reitzenstein, M., Rottier, P. J., Rusvai, M., Shields, S., Xylouri, E., Xu, Z., & Buonavoglia, C. (2013). European surveillance for pantropic canine coronavirus. Journal of Clinical Microbiology, 51(1), 83–88.

Decaro, N., Mari, V., Elia, G., Addie, D. D., Camero, M., Lucente, M. S., Martella, V., & Buonavoglia, C. (2010). Recombinant canine coronaviruses in dogs, Europe. Emerging Infectious Diseases, 16(1), 41–47.

Decaro, N., Mari, V., Reitzenstein, M., Lucente, M. S., Cirone, F., Elia, G., Martella, V., King, V. L., Bello, A., Varello, K., Zhang, S., Caramelli, M., & Buonavoglia, C. (2012). A pantropic canine coronavirus genetically related to the prototype isolate CB/05. Veterinary Microbiology, 159, 239–244.

Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D., & Baric, R. S. (2011). Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity. RNA Biology, 8, 270–279.

Evermann, J. F., Abbott, J. R., & Han, S. (2005). Canine coronavirus-associated puppy mortality without evidence of concurrent canine parvovirus infection. Journal of Veterinary Diagnostic Investigation, 17, 610–614.

Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology, 1, 1282–1301.

Goddard, A., & Leisewitz, A. L. (2010). Canine parvovirus. Veterinary Clinics of North America Small Animal Practice, 40(6), 1041–1053.

Godsall, S. A., Clegg, S. R., Stavisky, J. H., Radford, A. D., & Pinchbeck, G. (2010). Epidemiology of canine parvovirus and coronavirus in dogs presented with severe diarrhea to PDSA Pet Aid hospitals. Veterinary Record, 167, 196–201.

Goralsky, L. P., Khomich, V. T., & Kononsky, O. I. (2015). Osnovy histolohichnoyi tekhniky i morfofunktsional’ni metody doslidzhen’ u normi ta pry patolohiyi [Fundamentals of histological technique and morphofunctional methods of research in normal and pathology]. Zhytomyr (in Ukrainian).

He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Zhou, J., Zhen, W., Feng, Y., Guo, H., Zhang, H., & Tu, C. (2014). Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. Journal of Virology, 88(12), 7070–7082.

Levy, G. A., Liu, M., Ding, J., Yuwaraj, S., Leibowitz, J., Marsden, P. A., Ning, Q., Kovalinka, A., & Phillips, M. J. (2000). Molecular and functional analysis of the human prothrombinase gene (HFGL2) and its role in viral hepatitis. The American Journal of Pathology, 156, 1217–1225.

Licitra, B. N., Duhamel, G. E., & Whittaker, G. R. (2014). Canine Enteric Coronaviruses: Emerging viral pathogens with distinct recombinant spike proteins. Viruses, 6(8), 3363–3376.

Lisova, V. V., & Dubinenko, O. (2017). Histolohichni zminy v sobak za koronavirusnoyi infektsiyi [Histological changes in dogs with coronavirus infection]. Scientific Messenger of National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytsky, 78(19), 154–157 (in Ukrainian).

Lisova, V. V., & Radzikhovsky, M. L. (2018). Patomorfolohichna diahnostyka enterytiv virusnoyi etiolohiyi u sobak [Pathomorphological diagnostics of enteritis of viral etiology in dogs]. Scientific Messenger of National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytsky, 83(20), 299–303 (in Ukrainian).

Meese, E., & Blin, N. (1987). Simultaneous isolation of high molecular weight RNA and DNA from limited amounts of tissues and cells. Gene Analysis Techniques, 4, 45–49.

Mihindukulasuriya, K. A., Wu, G., Leger, S. J., Nordhausen, R. W., & Wang, D. (2008). Identification of a novel coronavirus from a beluga whale by using a panviral microarray. Journal of Virology, 82(10), 5084–5088.

Mitchell, J. A., Brooks, H. W., Szladovits B., Erles K., Gibbons R., Shields S., & Brownlie, J. (2013). Tropism and pathological findings associated with canine respiratory coronavirus (CRCoV). Veterinary Microbiology, 162, 582–594.

Mitchell, J. A., Cardwell, R. W., Renshaw, J. M, Dubovi, E. J., & Brownlie, J. (2013). Detection of canine pneumovirus in dogs with canine infectious respiratory disease. Journal of Clinical Microbiology, 51(12), 4112–4119.

Netherton, C. L., & Wileman, T. (2011). Virus factories, double membrane vesicles and viroplasm generated in animal cells. Current Opinion Virology, 1, 381–387.

Ntafis, V., Mari, V., Decaro, N., Papanastassopoulou, M., Papaioannou, N., Mpatziou, R., Buonavoglia, C., & Xylouri, E. (2011). Isolation, tissue distribution and molecular characterization of two recombinant canine coronavirus strains. Veterinary Microbiology, 151, 238–244.

Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7(6), 439–450.

Poder, S. L. (2011). Rottier feline and canine coronaviruses: Common genetic and pathobiological features. Advances in Virology, 2011, 1–11.

Pratelli, A. (2006). Infection genetic evolution of canine coronavirus and recent advances in prophylaxis. Veterinary Research, 37(2), 191–200.

Radzikhovsky, M. L. (2016). Monіtoryng enterytіv vіrusnoyi etіologіyi u sobak [Monitoring of enteritis of viral etiology in dogs]. Scientific Messenger of National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytsky, 18, 138–142 (in Ukrainan).

Szczepanski, A., Owczarek, K., Milewska, A., Baster, Z., Rajfur, Z., Mitchell, J. A., & Pyrc, K. (2018). Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells. Veterinary Researh, 49(1), 1–15.

Tennant, B. J., Gaskell, R. M., Kelly, D. F., Carter, S. D., & Gaskell, C. J. (1991). Canine coronavirus infection in the dog following oronasal inoculation. Journal of Research in Veterinary Science, 51(1), 11–19.

Vlasova, A. N., Halpin, R., Wang, S., Ghedin, E., Spiro, D. J., & Saif, L. J. (2011). Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis. Journal of General Virology, 92(6), 1369–1379.

Woo, P. C., Huang, Y., Lau, S. K., & Yuen, K. Y. (2010). Coronavirus genomics and bioinformatics analysis. Viruses, 2(8), 1804–1820.

Zappulli, V., Caliari, D., & Cavicchioli, L. (2008). Systemic fatal type II coronavirus infection in a dog: Pathological findings and immunohistochemistry. Research in Veterinary Science, 84(2), 278–282.

Zicola, A., Jolly, S., Mathijs, E., Ziant, D., Decaro, N., Mari, V., & Thiry, E. (2012). Fatal outbreaks in dogs associated with pantropic canine coronavirus in France and Belgium. Journal of Small Animal Practice, 53(5), 297–300.

Published
2019-11-18
How to Cite
Goralskii, L., RadzіkhovskyN., DyshkantО., Dunaievska, O., & Sokulskiy, I. (2019). Experimental study of tropism in cultivated canine coronavirus in the small intestine of puppies . Regulatory Mechanisms in Biosystems, 10(4), 489-496. https://doi.org/10.15421/021972