Peculiarities of microstructure of the suprarenal glands of rabbits with different types of autonomic tone

Keywords: adrenal glands; sympathicotonic rabbits; normotonic rabbits; parasympathicotonic rabbits.


The article investigates the structure of the suprarenal (adrenal) glands of male rabbits (Oryctolagus cuniculus), in which, on the basis of electrocardiographic and variational-pulsometric studies, different types of autonomic tone were observed. This allowed the animals to be divided into three groups: 1) sympathicotonic rabbits; 2) normotonic rabbits; 3) parasympathicotonic rabbits. The animals of the first two groups were characterized by almost the same body weight, while weight of the rabbits of the third group was slightly higher. After euthanasia, the suprarenal glands were extracted for histological and histochemical analyses. Morphometric study of histopreparations revealed that in the normotonic rabbits the thickness of the zona glomerulosa and zona fasciculata of the suprarenal glands were of average sizes, and the area of the medulla was the smallest. The parasympathicotonic rabbits had the thickest zona glomerulosa and greatest area of the medulla, but the thinnest zona fasciculata. The sympathicotonic rabbits were observed to have the greatest thickness of the zona fasciculata of the suprarenal glands, the area of the medulla was of average values, and the thickness of the zona glumerulosa was of minimum value. The type of autonomic tone also manifests in the saturation of each of the zones with cells. The normotonic rabbits were observed to have the highest number of cells per area of 1,000 µm² in the zona fasciculata and the medulla, sympathicotonic rabbits – in the zona glomerulosa and zona reticularis, and in parasympathicotonic rabbits this parameter had average or lowest values in all the zones. The sizes of cells and their structural parts were characterized on the basis of nuclear-cytoplasmic ratio. In the zona fasciculata and medulla this parameter was highest among parasympathicotonic rabbits, and lowest in sympathicotonic rabbits. In the zona glomerulosa, almost equal values were observed in the normotonic and parasympathicotonic rabbits, while being reliably lower in sympathicotonic rabbits. By the value of nuclear-cytoplasmic ratio in the zona reticularis, the normotonic rabbits dominated, followed by the sympathicotonic animals, and the parasympathicotonic rabbits had the lowest parameters.


Baevskij, R. M., Kirilov, O. I., & Kleckin, S. Z. (1984). Matematicheskij analiz serdechnogo ritma pri stresse [Mathematical analysis of cardiac rhythm in stress]. Nauka, Moscow (in Russian).

Baine, K., Newkirk, K., Fecteau, K., & Souza, M. (2014). Elevated testosterone and progestin concentrations in a spayed female rabbit with an adrenal cortical adenoma. Case Reports in Veterinary Medicine, 239410.

Bandiera, R., Vidal, V. P., Motamedi, F. J., Clarkson, M., Sahut-Barnola, I., von Gise, A., Pu, W. T., Hohenstein, P., Martinez, A., & Schedl, A. (2013). WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Developmental Cell, 27, 5–18.

Barszcz, K., Przespolewska, H., Olbrych, K., Czopowicz, M., Klećkowska-Nawrot, J., Goździewska-Harłajczuk, K., & Kupczyńska, M. (2016). The morphology of the adrenal gland in the European bison (Bison bonasus). BMC Veterinary Research, 12(1), 161.

Barwick, T. D., Malhotra, A., Webb, J. A., Savage, M. O., & Reznek, R. H. (2005). Embryology of the adrenal glands and its relevance to diagnostic imaging. Clinical Radiology, 60(9), 953–959.

Capaldo, A., Gay, F., De Falco, M., Virgilio, F., Laforgia, V., & Varano, L. (2006). The adrenal gland of newt Triturus carnifex (Amphibia, Urodela) following in vivo betamethasone administration. Anatomy and Embryology, 211(6), 577–584.

Chandra, S. V., & Imam, Z. (1975). Effect of manganese on the morphology of the rabbit adrenal cortex. Arhiv za Higijenu Rada i Toksikologiju, 26(3), 201–207.

Chimenti, C., & Accordi, F. (2013). Differentiation of steroidogenic cells in the developing adrenal gland of Testudo hermanni Gmelin, 1789 (chelonian reptiles). Anatomia, Histologia, Embryologia, 42(4), 275–284.

Clark, L. S., Pfeiffer, D. C., & Cowan, D. F. (2005). Morphology and histology of the atlantic bottlenose dolphin (Tursiops truncatus) adrenal gland with emphasis on the medulla. Anatomia, Histologia, Embryologia, 34(2), 132–140.

Crivellato, E., De Falco, M., Capaldo, A., Laforgia, V., Ribatti, D., & Luca, A. (2009). Chromaffin cells in the amphibian urodele triturus carnifex show ultrastructural features indicative of a vesicle-mediated mode of cell degranulation. The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology, 292(1), 73–78.

Dörner, J., Martinez Rodriguez, V., Ziegler, R., Röhrig, T., Cochran, R. S., Götz, R. M., Levin, M. D., Pihlajoki, M., Heikinheimo, M., & Wilson, D. B. (2016). GLI1+ progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue. Molecular and Cellular Endocrinology, 441, 164–175.

Dumbell, R., Matveeva, O., & Oster, H. (2016). Circadian clocks, stress, and immunity. Frontiers in Endocrinology, 7, 37.

El-Nahla, S. M., Imam, H. M., Moussa, E. A., Elsayed, A. K., & Abbott, L. C. (2011). Prenatal development of the adrenal gland in the one-humped camel (Camelus dromedarius). Anatomia, Histologia, Embryologia, 40(3), 169–186.

Fiadotau, D. N. (2015). The age histology adrenal medulla of the cattle. Theoretical and Applied Science, 22, 8–10.

Finco, I., & Hammer, G. D. (2018). Isolation, fixation, and immunofluorescence imaging of mouse adrenal glands. Journal of Visualized Experiments, 140, 58530.

Freedman, B. D., Kempna, P. B., Carlone, D. L., Shah, M. S., Guagliardo, N. A., Barrett, P. Q., Gomez-Sanchez, C. E., Majzoub, J. A., & Breault, D. T. (2013). Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Developmental Cell, 26, 666–673.

Gallo-Payet, N., Martinez, A., & Lacroix, A. (2017). Editorial: ACTH action in the adrenal cortex: From molecular biology to pathophysiology. Frontiers in Endocrinology, 8, 101.

Huang, C.-C., & Kang, Y. (2019). The transient cortical zone in the adrenal gland: The mystery of the adrenal X-zone. Journal of Endocrinology, 241(1), 51–63.

Huber, K. (2006). The sympathoadrenal cell lineage: Specification, diversification, and new perspectives. Developmental Biology, 298, 335–343.

Huber, K., Combs, S., Ernsberger, U., Kalcheim, C., & Unsicker, K. (2002). Generation of neuroendocrine chromaffin cells from sympathoadrenal progenitors: Beyond the glucocorticoid hypothesis. Annals of the New York Academy of Sciences, 971, 554–559.

Huber, K., Kalcheim, C., & Unsicker, K. (2009). The development of the chromaffin cell lineage from the neural crest. Autonomic Neuroscience, 151(1), 10–16.

Humayun, K. A. K. M., Aoyama, M., & Sugita, S. (2012). Morphological and histological studies on the adrenal gland of the chicken (Gallus domesticus). The Journal of Poultry Science, 49(1), 39–45.

Hussein, A. A., Abass, T. A., Hussein, B. F., & Yassin, M. M. (2015). Histomorphological developmental study of the adrenal gland of the local rabbit at one and fifteen days age. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 14(2), 47–54.

Jelinek, F., & Konecny, R. (2011). Adrenal glands of slaughtered bulls, heifers and cows: A histological study. Anatomia, Histologia, Embryologia, 40(1), 28–34.

Kataoka, Y., Ikehara, Y., & Hattori, T. (1996). Cell proliferation and renewal of mouse adrenal cortex. Journal of Anatomy, 188(2), 375–381.

Katsnelson, Z. S. (1968). O tak nazyvaemoj kapsuljarnoj (subkapsuljarnoj) blasteme v nadpochechnike [On the so-called capsular (subcapsular) adrenal blastema]. Arhiv Anatomii, Gistologii i Embriologii, 54, 3–12 (in Russian).

Keegan, C. E., & Hammer, G. D. (2002). Recent insights into organogenesis of the adrenal cortex. Trends in Endocrinology and Metabolism, 13(5), 200–208.

Kigata, T., & Shibata, H. (2018). Arterial supply to the rabbit adrenal gland. Anatomical Science International, 93(4), 437–448.

Kononskiy, A. I. (1976). Gistohimiya [Histochemistry]. Vyshha Shkola, Kyiv (in Russian).

Kruglova, V. A. (1975). Gistologicheskoe issledovanie nadpochechnika u treh vidov pustynnyh zhivotnyh [Histological examination of the adrenal gland in three species of desert animals]. Arhiv Anatomii, Gistologii i Embriologii, 68(2), 44–49 (in Russian).

Lofts, B., Phillips, J. G., & Tam, W. H. (1971). Seasonal changes in the histology of the adrenal gland of the cobra, Naja naja. General and Comparative Endocrinology, 16(1), 121–131.

Lotfi, C. F. P., Kremer, J. L., Passaia, B. S., & Cavalcante, I. P. (2018). The human adrenal cortex: Growth control and disorders. Clinics (Sao Paulo), 73(1), e473s.

McCreedy, C. D., & Harmon, P. W. (1992). Sodium provision and wild cottontail rabbits: Morphological change in adrenal glands. The Journal of Wildlife Management, 56(4), 669–676.

Mezhnin, F. I. (1970). Gistohimicheskoe issledovanie gistogeneza nadpochechnika u domashnej kuricy [Histochemical study of adrenal gland histogenesis in domestic chicken]. Arhiv Anatomii, Gistologii i Embriologii, 59, 59–63 (in Russian).

Milano, E., & Accordi, F. (1986). Evolutionary trends in adrenal gland of anurans and urodeles. Journal of Morphology, 189(3), 249–259.

Moawad, U. K., & Randa, M. H. (2017). Histocytological and histochemical features of the adrenal gland of adult egyptian native breeds of chicken (Gallus domesticus). Journal of Basic and Applied Sciences, 6(2), 199–208.

Nicolaides, N. C., Charmandari, E., Kino, T., & Chrousos, G. P. (2017). Stress-related and circadian secretion and target tissue actions of glucocorticoids: Impact on health. Frontiers in Endocrinology, 8, 70.

Olukole, S., Adeagbo, M., & Oke, B. (2016). Histology and histochemistry of the adrenal gland african giant rat (Cricetomys gambianus, Waterhouse). International Journal of Morphology, 34(4), 1455–1460.

Orezzoli, A. A., Gonzalez, N. V., Villar, M. J., Hökfelt, T., & Tramezzani, J. H. (1994). Histochemical study of chromaffin cells and nerve fibers in the adrenal gland of the flat snake (Waglerophis merremii). General and Comparative Endocrinology, 93(3), 411–423.

Parker, T. L., Kesse, W. K., Mohamed, A. A., & Afework, M. (1993). The innervation of the mammalian adrenal gland. Journal of Anatomy, 183, 265–276.

Paul, B., Sarkar, S., Islam, M. N., & Das, R. (2016). Morphological and histological investigations on the adrenal glands in black bengal goat (Capra hircus). Journal of the Sylhet Agricultural University, 3(2), 181–187.

Pihlajoki, M., Dörner, J., Cochran, R. S., Heikinheimo, M., & Wilson, D. B. (2015). Adrenocortical zonation, renewal, and remodeling. Frontiers in Endocrinology, 6, 27.

Pirs, E. (1962). Gistohimija teoreticheskaja i prikladnaja [Theoretical and applied histochemistry]. Izdatel’stvo Inostrannoj Literatury, Moscow (in Russian).

Raharison, F., Bourges, A. N., Sautet, J., Deviers, A., & Mogicato, G. (2017). Anatomy, histology and ultrasonography of the normal adrenal gland in brown lemur: Eulemur fulvus. Journal of Medical Primatology, 46(2), 25–30.

Ramey, E. R., & Goldstein, M. S. (1957). The adrenal cortex and the sympathetic nervous system. Physiological Reviews, 37(2), 155–195.

Rupik, W. (2002). Early development of the adrenal glands in the grass snake Natrix natrix L. (Lepidosauria, Serpentes). Springer-Verlag, Berlin.

Santos, A. C., Viana, D. C., Bertassoli, B. M., Vasconcelos, B. G., Oliveira, D. M., Rici, R. E. G, Oliveira, M. F., Miglino, M. A., & Assis-Neto, A. C. (2016). Adrenal glands of Spix’s yellow-toothed cavy (Galea spixii, Wagler, 1831): Morphological and morphometric aspects. Brazilian Journal of Biology, 76(3), 645–655.

Sedova, E. V. (1974). Sopostavlenie fetal’noj kory i X-zony v nadpochechnike nekotoryh mlekopitajushhih [Comparison of the fetal cortex and X-zone in the adrenal gland of some mammals]. Arhiv Anatomii, Gistologii i Embriologii, 66(5), 77–82 (in Russian).

Sheikhian, A., Saadatfar, Z., & Mohammadpour, A. (2014). A histological study of adrenal gland in guinea pig and hamster. Comparative Clinical Pathology, 24(5), 1069–1074.

Sokolov, V. I. (1969). Osobennosti soedinenija zachatkov interrenalovoj i suprarenalovoj zhelez i rannij gistogenez nadpochechnika u krolika [Features of the connection of the primordia of the interrenal and suprarenal glands and early adrenal histogenesis in a rabbit]. Arhiv Anatomii, Gistologii i Embriologii, 57(9), 13–19 (in Russian).

Sokolov, V. I. (1972). Gistogenez nadpochechnika zolotistogo homjaka v svjazi s problemoj h-zony [Golden hamster adrenal gland histogenesis due to h-zone problem]. Arhiv Anatomii, Gistologii i Embriologii, 63(7), 65–75 (in Russian).

Sonjoy, S., Nazrul, I., Gitaindro, N. A., Bashudeb, P., & Nayan, B. (2014). Morphological and histological studies on the adrenal gland in male and female chicken (Gallus domesticus). International Journal of Biological and Pharmaceutical Research, 5(9), 715–718.

Sunwoo, S. H., Lee, J. S., Bae, S. J., Shin, Y. J., Kim, C. S., Joo, S. Y., Choi, H. S., Suh, M., Kim, S. W., Choi, Y. J., & Kim, T. (2019). Chronic and acute stress monitoring by electrophysiological signals from adrenal gland. PNAS, 116(4), 1146–1151.

Tachibana, T., Kusakabe, K. T., Osaki, S., Kuraishi, T., Hattori, S., Yoshizawa, M., Kai, C., & Kiso, Y. (2015). Histocytological specificities of adrenal cortex in the New World Monkeys, Aotus lemurinus and Saimiri boliviensis. Journal of Veterinary Medical Science, 78(1), 161–165.

Unsicker, K., Huber, K., Schober, A., & Kalcheim, C. (2013). Resolved and open issues in chromaffin cell development. Mechanisms of Development, 130, 324–329.

Vidal, V., Sacco, S., Rocha, A. S., da Silva, F., Panzolini, C., Dumontet, T., Doan, T. M., Shan, J., Rak-Raszewska, A., Bird, T., Vainio, S., Martinez, A., & Schedl, A. (2016). The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes and Development, 30(12), 1389–1394.

Vinson, G. P. (2016). Functional zonation of the adult mammalian adrenal cortex. Frontiers in Neuroscience, 10, 238.

Vinson, G. P., Pudney, J. A., & Whitehouse, B. J. (1985). The mammalian adrenal circulation and the relationship between adrenal blood flow and steroidogenesis. Journal of Endocrinology, 105(2), 285–294.

Vuković, S., Lucić, H., Zivković, A., Duras Gomercić, M., Gomercić, T., & Galov, A. (2010). Histological structure of the adrenal gland of the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba) from the Adriatic Sea. Anatomia, Histologia, Embryologia, 39(1), 59–66.

Xing, Y., Lerario, A. M., Rainey, W., & Hammer, G. D. (2015). Development of adrenal cortex zonation. Endocrinology and Metabolism Clinics of North America, 44(2), 243–274.

Ye, L. X., Wang, J. X., Li, P., & Zhang, X. T. (2018). Distribution and morphology of ghrelin immunostained cells in the adrenal gland of the African ostrich. Biotechnic and Histochemistry, 93(1), 1–7.

Zakrevska, M., & Tybinka, A. (2019). Gistologichna harakterystyka dodatkovyh nadnyrkovyh zaloz kroliv z riznymy typamy avtonomnogo tonusu [Histological characteristics of accessory adrenal glands of rabbits with different types of autonomous tonus]. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Series Veterinary Sciences, 21, 125–130 (in Ukrainian).

Zhedenov, V. N. (1987). Anatomija krolika [Rabbit anatomy]. Sovetskaja Nauka, Moscow (in Russian).

How to Cite
Zakrevska, M. V., & Tybinka, A. M. (2019). Peculiarities of microstructure of the suprarenal glands of rabbits with different types of autonomic tone . Regulatory Mechanisms in Biosystems, 10(4), 415-421.