Impact of corvitin and alpha-ketoglutarate on heart morphology, expression and activity of matrix metalloproteinases 2/9 in the heart of rats with doxorubicin-induced cardiomyopathy

Keywords: gelatinases A and B; heart diseases; anthracycline antibiotic; antioxidants.

Abstract

The anthracycline anticancer drug doxorubicin is an effective and frequently used chemotherapeutic agent for various malignancies but it causes acute ventricular dysfunction, and also induces cardiomyopathy and heart failure. One of the mechanisms of cardiotoxicity of doxorubicin is oxidative stress, which stimulates myocardial remodeling. Matrix metalloproteinases MMP2 and MMP9 play a key role in this process. Despite extensive research, the expression and activity of these enzymes in the doxorubicin-damaged heart and the effect of antioxidants on these indicators have not been sufficiently studied. The aim of this work was to study the possible cardioprotective effect of the antioxidant drugs corvitin and alpha-ketoglutarate in rats with doxorubicin-induced cardiomyopathy. Cardiomyopathy in rats was induced by intraperitoneal administration of doxorubicin at the dose of 2.5 mg/kg body weight weekly for 28 days. Animals were divided into four groups: group 1 (control) received saline injections (2.5 mL/kg); group 2 – injections of doxorubicin, 3 – corvitin (5 mg/kg) 60 minutes before doxorubicin administration, 4 – doxorubicin and 1% solution of alpha-ketoglutarate in drinking water ad libitum. Heart weight and shape indexes, the ratio of muscle to connective tissues, and heart histology were examined 7 days after the end of drug administration. Activity of MMP2 and MMP9, their intracellular distribution in myocardial tissues were evaluated by gelatin-zymography and immunohistochemistry. It was found that doxorubicin cardiomyopathy in rats was accompanied by a decrease in heart weight index, adaptive change of heart shape from ellipsoid to globular, increase of connective tissue content. Administration of doxorubicin results in profound lesion of the cardiomyocytes of the atria and ventricle, manifested by excessive cytoplasmic expression of MMP2 and MMP9 and an increase their activity in the heart. Antioxidants corvitin and alpha-ketoglutarate have insufficient regenerative effect on mass and shape indexes of heart however, exhibit potent cardioprotective effect by regulation of expression and activity of MMP2 and MMP9.

References

Angsutararux, P., Luanpitpong, S., & Issaragrisil, S. (2015). Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 795602.


Antonov, I. B., Kozlov, K. L., Paltseva, E. M., Polyakova, O. V., & Linkova, N. S. (2018). Matrix metalloproteinases MMP-1 and MMP-9 and their inhibitor TIMP-1 as markers of dilated cardiomyopathy in patients of different age. Bulletin of Experimental Biology and Medicine, 164(4), 550–553.


Avtandilov, G. G. (Ed.). (2002). Osnovy kolichestvennoy patologicheskoy anatomii [Fundamentals of quantitative pathological anatomy]. Medicina, Mosсow (in Russian).


Bartekova, M., Simoncikova, P., Fogarassyova, M., Ivanova, M., Okruhlicova, L., Tribulova, N., Dovinova, I., & Barancik, M. (2015). Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. The International Journal of Molecular Sciences, 16(4), 8168–8185.


Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgramme quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.


Cappetta, D., Esposito, G., Coppini, R., Piegari, E., Russo, R., Ciuffreda, L. P., Rivellino, A., Santini, L., Rafaniello, C., Scavone, C., Rossi, F., Berrino, L., Urbanek, K., & De Angelis, A. (2017). Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. The British Journal of Pharmacology, 174(21), 3696–3712.


Cappetta, D., Esposito, G., Piegari, E., Russo, R., Ciuffreda, L. P., Rivellino, A., Berrino, L., Rossi, F., De Angelis, A., & Urbanek, K. (2016). SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. The International Journal of Cardiology, 205, 99–110.


Carvalho, C. A. M., & Thomazini, J. A. (2013). Morphometric and anatomical evaluation of the heart of Wistar rats. International Journal of Morphology, 31(2), 724–728.


Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115(2), 155–162.


Chaudhari, U., Ellis, J. K., Wagh, V., Nemade, H., Hescheler, J., Keun, H. C., & Sachinidis, A. (2017). Metabolite signatures of doxorubicin induced toxicity in human induced pluripotent stem cell-derived cardiomyocytes. Amino Acids, 49(12), 1955–1963.


Curigliano, G., Cardinale, D., Suter, T., Plataniotis, G., de Azambuja, E., Sandri, M. T., Criscitiello, C., Goldhirsch, A., Cipolla, C., & Roila, F. (2012). Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Сlinical practice guidelines. Annals of Oncology, 23(7), 155–166.


Delehanty, J. B., Das, S., Goldberg, E., Sangtani, A., & Knight, D. A. (2018). Synthesis of a reactive oxygen species responsive doxorubicin derivative. Molecules, 23(7), e1809.


Dong, Q, Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., & Wang, G. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. The British Journal of Pharmacology, 171(19), 4440–4454.


Gharanei, M., Hussain, A., Janneh, O., & Maddock, H. L. (2013). Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore. Toxicology and Applied Pharmacology, 268, 149–156.


Gonzales, G. B. (2017). In vitro bioavailability and cellular bioactivity studies of flavonoids and flavonoid-rich plant extracts: Questions, considerations and future perspectives. Proceedings of the Nutrition Society, 76(3), 175–181.


Gordiienko, I. А., Babets, Y. V., Kulinich, А. О., Shevtsova, А. І., & Ushakova, G. О. (2014). Activity of trypsin-like enzymes and gelatinases in rats with doxorubicin cardiomyopathy. The Ukrainian Biochemical Journal, 86(6), 139–146.


Hahn, V. S., Lenihan, D. J., & Ky, B. (2014). Cancer therapy-induced cardiotoxicity: Basic mechanisms and potential cardioprotective therapies. Journal of the American Heart Association, 3(2), e000665.


Ivanova, M., Dovinova, I., Okruhlicova, L., Tribulova, N., Simoncíkova, P., Bartekova, M., Vlkovicova, J., & Barancík, M. (2012). Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacologica Sinica, 33(4), 459–469.


Jin, H. B., Yang, Y. B., Song, Y. L., Zhang, Y. C., & Li, Y. R. (2012). Protective roles of quercetin in acute myocardial ischemia and reperfusion injury in rats. Molecular Biology Reports, 39(12), 11005–11009.


Jung, J.-S., Ahn, Y.-H., Moon, B.-I., & Kim, H.-S. (2016). Exogenous C2 ceramide suppresses matrix metalloproteinase gene expression by inhibiting ROS production and MAPK signaling pathways in PMA-stimulated human astroglioma cells. The International Journal of Molecular Sciences, 17(4), 477.


Kamel, M. M., El-Farouk, L. O., Osman, A. S., Khorshid, O. A., & Shabrawy-Abdo, M. E. (2017). Comparative study of the protective effect of metformin and sitagliptin against doxorubicin-induced cardiotoxicity in rats. Clinical Pharmacology and Biopharmaceutics, 6, 174.


Kapelko, V. I., & Popovich, M. I. (Eds.). (1990). Metabolicheskie i funkcional’nye osnovy eksperimental’nyh kardiomiopatij [Metabolic and functional basis of experimental cardiomyopathies]. Stiinza, Kishinev (in Russian).


Kimura-Ohba, S., & Yang, Y. (2016). Oxidative DNA damage mediated by intranuclear mmp activity is associated with neuronal apoptosis in ischemic stroke oxidative medicine and cellular longevity. Oxidative Medicine and Cellular Longevity, 2016, 6927328.


Koldysheva, E. V., Klinnikova, M. G., Nikityuk, D. B., Ivleva, E. K., Listvyagova, N. A., & Lushnikova, E. L. (2018). Role of matrix metalloproteinase-2 in the development of cyclophosphamide-induced cardiomyopathy. Bulletin of Experimental Biology and Medicine, 164(4), 483–487.


Lin, H.-B., Cadete, V. J. J., Sra, B., Sawicka, J., Chen, Z., Bekar, L. K., Cayabyab, F., & Sawicki, G. (2014). Inhibition of mmp-2 expression with sirna increases baseline cardiomyocyte contractility and protects against simulated ischemic reperfusion injury. BioMed Research International, 2014, 810371.


Lindsey, M. L., Iyer, R. P., Jung, M., DeLeon-Pennell, K. Y., & Ma, Y. (2016). Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. Journal of Molecular and Cellular Cardiology, 91, 134–140.


Loncar-Turukalo, T., Vasic M., Tasic, T., Mijatovic, G., Glumac, S., Bajic, D., & Japunzic-Zigon, N. (2015). Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiological Measurement, 36(4), 727–739.


MacKenzie, E. D., Selak, M. A., Tennant, D. A., Payne, L. J., Crosby, S., Frederiksen, C. M., Watson, D. G., & Gottlieb, E. (2007). Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Molecular and Cellular Biology, 27(9), 3282–3289.


Mancilla, T. R., Iskra, B., & Aune, G. J. (2019). Doxorubicin-induced cardiomyopathy in children. Comprehensive Physiology, 9(3), 905–931.


Mayer, F., Falk, M., Huhn, R., Behmenburg, F., & Ritz-Timme, S. (2018). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Immunhistochemical markers in the diagnosis of lethal myocardial infarctions? Forensic Science International, 288, 181–188.


Meschiari, C. A., Ero, O. K., Pan, H., Finkel, T., & Lindsey, M. L. (2017). The impact of aging on cardiac extracellular matrix. Geroscience, 39(1), 7–18.


Munch, J., Avanesov, M., Bannas, P., Säring, D., Kramer, E., Mearini, G., Carrier, L., Suling, A., Lund, G., & Patten, M. (2016). Serum matrix metalloproteinases as quantitative biomarkers for myocardial fibrosis and sudden cardiac death risk stratification in patients with hypertrophic cardiomyopathy. Journal of Cardiac Failure, 22(10), 845–850.


Nazarova, D. I., Kramar, S. B., Zharikov, M. Y., Kuznetsova, O. V., Kramar, G. Y., & Kozhushko, V. V. (2014). The morphological characteristics of nutria heart. Morphologia, 8(1), 65–68.


Nebigil, C. G., & Desaubry, L. (2018). Updates in anthracycline-mediated cardiotoxicity. Frontiers in Pharmacology, 9, 1262.


Octavia, Y., Tocchetti, C. G., Gabrielson, C. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52(6), 1213–1225.


Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., & Shin, H. S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. The European Journal of Medicinal Chemistry, 155, 889–904.


Pecoraro, M., Rodriguez-Sinovas, A., Marzocco, S., Ciccarelli, M., Iaccarino, G., Pinto, A., & Popolo, A. (2017). Cardiotoxic effects of short-term doxorubicin administration: Involvement of connexin 43 in calcium impairment. International Journal of Molecular Sciences, 18(10), e2121.


Polegato, B. F., Minicucci, M. F., Azevedo, P. S., Carvalho, R. F., Chiuso-Minicucci, F., Pereira, E. J., Paiva, S. A., Zornoff, L. A., Okoshi, M. P., Matsubara, B. B., & Matsubara, L. S. (2015). Acute doxorubicin-induced cardiotoxicity is associated with matrix metalloproteinase-2 alterations in rats. Cellular Physiology and Biochemistry, 35(5), 1924–1933.


Pytliak, M., Vanik, V., & Bojcik, P. (2017). Heart remodelation: Role of MMPs. The role of matrix metalloproteinase in human body pathologies.


Radosinska, J., Barancik, M., & Vrbjar, N. (2017). Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Medica, 59(3), 241–253.


Razavi-Azarkhiavi, K., Iranshahy, M., Sahebkar, A., Shirani, K., & Karimi, G. (2016). The protective role of phenolic compounds against doxorubicin-induced cardiotoxicity: A comprehensive review. Nutrition and Cancer, 68(6), 892–917.


Renu, K., Abilash, V. G., Pichiah, T. P. B., & Arunachalam, S. (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy – an update. The European Journal of Pharmacology, 818, 241–253.


Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin atenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology, 19(1), 1–10.


Shevcova, A. I., Gordijenko, J. A., Shaul’s’ka, O. E., & Skoromna, A. S., (2013). Pat. 83196 UA, MPK G 01 N33/49 Sposib vyznachennja zhelatynaz u plazmi krovi [Method for determination of plasma gelatinases]; zajavnyk ta patentovlasnyk DZ “Dnipropetrovs’ka medychna akademija MOZ Ukrai’ny” – zajavl. 26.03.13; opubl. 27.08.13, Bjul. № 16. – 4 p. (in Ukrainian).


Sinha, S. K., Asotra, K., Uzui, H., Nagwani, S., Mishra, V., & Rajavashisth, T. B. (2014). Nuclear localization of catalytically active MMP-2 in endothelial cells and neurons. American Journal of Translational Research, 6(2), 155–162.


Sinton, M. C., Hay, D. C., & Drake, A. J. (2019). Metabolic control of gene transcription in non-alcoholic fatty liver disease: The role of the epigenome. Clinical Epigenetics, 11(1), 1–12.


Sultana, S., Talegaonkar, S., Nishad, D. K., Mittal, G., Ahmad, F. J., & Bhatnagar, A. (2018). Alpha ketoglutarate nanoparticles: A potentially effective treatment for cyanide poisoning. European Journal of Pharmaceutics and Biopharmaceutics, 126, 221–232.


Tkachenko, V., Kovalchuk, Y., Bondarenko, N., Bondarenko, O., Ushakova, G., & Shevtsova, A. (2018). Effects of corvitin and 2-oxoglutarate on behavioral responses and antioxidant system in rats with pituitrin-isoproterenol-induced myocardial damage. Biochemistry Research International, 2018, 9302414.


Wang, L., Cheng, X., Li, H., Qiu, F., Yang, N., Wang, B., Lu, H., Wu, H., Shen, Y., Wang, Y., & Jing, H. (2014). Quercetin reduces oxidative stress and inhibits activation of c Jun N terminal kinase/activator protein 1 signaling in an experimental mouse model of abdominal aortic aneurysm. Molecular Medicine Reports, 9(2), 435–442.


Wang, Q.-W., Yu, X.-F., Xu, H.-L., Zhao, X.-Z., & Sui, D.-Y. (2019). Ginsenoside Re improves isoproterenol-induced myocardial fibrosis and heart failure in rats. Evidence-Based Complementary and Alternative Medicine, 2019, 3714508.


Wenningmann, N., Knapp, M., Ande, A., Vaidya, T. R., & Ait-Oudhia, S. (2019). Insights into doxorubicin-induced cardiotoxicity: Molecular mechanisms, preventive strategies, and early monitoring. Molecular Pharmacology, 96(2), 219–232.


Zdzisinska, B., Zurek, A., & Kandefer-Szerszen, M. (2017). Alpha-ketoglutarate as a molecule with pleiotropic activity: Well-known and novel possibilities of therapeutic use. Archivum Immunologiae et Therapiae Experimentalis, 65(1), 21–36.


Zhan, H., Aizawa, K., Sun, J., Tomida, S., Otsu, K., Conway, S. J., Mckinnon, P. J., Manabe, I., Komuro, I., Miyagawa, K., Nagai, R., & Suzuki, T. (2016). Ataxia telangiectasia mutated in cardiac fibroblasts regulates doxorubicin-induced cardiotoxicity. Cardiovascular Research, 110(1), 85–95.

Published
2019-10-20
How to Cite
Gordiienko, I. A., Poslavska, O. V., & Shevtsova, A. I. (2019). Impact of corvitin and alpha-ketoglutarate on heart morphology, expression and activity of matrix metalloproteinases 2/9 in the heart of rats with doxorubicin-induced cardiomyopathy . Regulatory Mechanisms in Biosystems, 10(4), 372-381. https://doi.org/10.15421/021956