Power spectrum and coherence of electroencephalograms of young people with the use of mnemotechnics

  • Y. Usenkо Oles Honchar Dnipro National University
  • О. Severynovska Oles Honchar Dnipro National University
  • І. Kоfan Oles Honchar Dnipro National University
  • І. Dregval Oles Honchar Dnipro National University
  • O. Znanetska Oles Honchar Dnipro National University
Keywords: cerebral bioelectric activity; a foreign language; associations; associative thinking.


The increase of external information and the need for processing of large information arrays has been leading to the search for mechanisms of thinking in mental activity, as well as new methods of data protection and reproduction. Power spectrum and coherence of electroencephalograms (EEG) during memorizing of foreign words has been analyzed in many ways: in the usual one with the help of mnemotechnics. The research was conducted during the ovarian phase of the cycle of 11 female students aged 18–20. Registration of EEG activity was carried out according to the international system of H. Jasper,"10–20". The process of recollection of associative information led to the decrease in the power spectrum of the EEG in the alpha range in the frontal and temporal loci of the left hemisphere and the prefrontal sections of both hemispheres, in the beta range it was probable only in T6 zone of beta2 range, in the delta range it was in the prefrontal, posterior lower-frontal and posttemporal loci of both hemispheres, in the central, parietal and occipital regions of the left hemisphere, as well as in the anteriofrontal zone of the right hemisphere, in the theta-range – in the prefrontal and posterior lower-frontal regions of both hemispheres and in the posttemporal and occipital loci of the left hemisphere. Synchronization in the delta range is the reflection of the processes of figural information processing and manipulation. With the increase of attention concentration, the synchronization was observed in the theta range in the anteriofrontal and F4–P4 zones. Interhemispheric functional and symmetrical bonds in the alpha and beta ranges indicate the involvement of the corpus callosum in the process of memorizing foreign words, which facilitates their faster, more correct and easier reproduction, especially with the use of associative images. The decrease of power spectrum in the delta and theta ranges showed that less effort was required to reproduce associative information than to mention unsupported images of foreign words. The effective use of the association method is realized by reduction of the power spectrum of the waves in the alpha range in the frontal and temporal loci of the left hemisphere and the prefrontal sections of both hemispheres, which indicates the activation of mental activity in these zones in the processes of maintaining and reproducing associative information.


Bechtereva, N. P., & Nagornova, Z. V. (2007). Changes in EEG coherence during tests for nonverbal (Figurative) creativity. Human Physiology, 33(5), 515–523.

Bushov, Y. V., & Svetlik, M. V. (2008). Vysokochastotnaya elektricheskaya aktivnost' mozga i kognitivnyye protsessy [High-frequency electrical brain activity and cognitive processes]. Tomskiy Gosudarstvennyy Universitet, Tomsk (in Russian).

Cheng, S. Y., & Hsu, H. T. (2011). Mental fatigue measurement using EEG. In: Giancarlo, N. (Ed.). Risk management trends. InTech, Rijeka. Pp. 203–228.

Craik, F. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behaviour, 11, 671–684.

Dan'ko, S. G. (2005). Elektroentsefalograficheskiye korrelyaty sostoyaniy mozga pri verbal'nom obuchenii [Electroencephalographic correlates of the brain state during verbal learning]. Fiziologiya Cheloveka, 31(5), 15–20 (in Russian).

Decety, J., & Ingvar, D. H. (1990). Brain structures participating in mental simulation of motor behavior: A neurophysiological interpretation. Acta Psychologica, 73(1), 13–34.

Dresler, M., & Konrad, B. N. (2013). Mnemonic expertise during wakefulness and sleep. Behavioral and Brain Sciences, 36(6), 616–617.

Dresler, M., Shirer, W. R., Konrad, B. N., Müller, N. J., Wagner, I. C., Fernández, G., Czisch, M., & Greicius, M. D. (2017). Mnemonic training reshapes brain networks to support superior memory. Neuron, 93(5), 1227–1235.

Dzhebrailova, T. D., & Korobejnikova, I. I. (2013). Prostranstvennaja organizacija beta2-ritma ЕЕG i effektivnost' kognitivnoj dejatelnosti cheloveka [Spatial organization of the beta2-rhythm and the effectiveness of human cognitive activity]. Zhurnal Vysshej Nervnoj Dejatelnosti, 63(6), 667–676 (in Russian).

Dzhebrailova, T. D., Korobejnikova, I. I., Karatygin, N. A., & Dudnik, E. N. (2015). Dynamics of EEG α activity and heart rate variability in subjects performing cognitive tests. Human Physiology, 41(6), 599–610.

Dzhebrailova, T. D., Korobejnikova, I. I., Karatygin, N. A., & Umrjuhin, E. A. (2011). Prostranstvennaja organizacija biopotencialov kory golovnogo mozga i vremja prinjatija reshenija pri celenapravlennoj intellektual'noj dejatel'nosti cheloveka [Spatial organization of the cerebral cortex biopotentials and decision – making time for targeted intellectual human activity]. Zhurnal Vysshej Nervnoj Dejatelnosti, 61(2), 180–189 (in Russian).

Dzhebrailova, T. D., Korobeynikova, I. I., Karatygin, N. A., & Dudnik, Y. N. (2017). Vzaimosvyaz' parametrov teta i beta-aktivnosti EEG i variabel'nosti serdechnogo ritma pri intellektual'noy deyatel'nosti cheloveka [Interrelation of EEG theta- and beta-activity parameters and heart rate variability in human intellectual activity]. Fiziologiya Cheloveka, 43(2), 91–105 (in Russian).

Eichenbaum, H. (2017). Memory: Organization and control. Annual Review of Psychology, 68, 19–45.

Elfgren, C. I., & Risberg, J. (1998). Lateralized frontal blood flow increases during fluency tasks: Influence of cognitivestrategy. Neuropsychology, 36, 505–512.

Fellner, M. C., Volberg, G., Wimber, M., Goldhacker, M., Greenlee, M. W., & Hanslmayr, S. (2016). Spatial mnemonic encoding: Theta power decreases cooccur with medial temporal lobe bold increases during the usage of the method of loci. Eneuro, 3(6), e0184.

Fernindez, T., Harmony, T., Rodriguez, M., Reyes, A., Marosi, E., & Bernal, J. (1993). Test-retest reliability of EEG spectra1 parameters during cognitive tasks. I. Absolute and relative power. International Journal of Neuroscience, 68, 255–261.

Goldman-Rakic, P. S., Mountcastle, V. B., Plum, F., & Geiger, S. G. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Comprehensive Physiology, 5, 373–417.

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253–258.

Gusel'nikov, V. I. (1976). Elektrofiziologiya golovnogo mozga [Brain electrophysiology]. Prosveshcheniye, Moscow (in Russian).

Hampstead, B. M., Stringer, A. Y., Stilla, R. F., & Sathian, K. (2019). Mnemonic strategy training increases neocortical activation in healthy older adults and patients with mild cognitive impairment. International Journal of Psychophysiology, S0167–8760(18), 30904–30908.

Hebb, D. O. (1968). Concerning imagery. Psychological Review, 75(6), 466–477.

Hoptman, M. J., & Davidson, R. J. (1994). How and why do the two cerebral hemispheres interact? Psychological Bulletin, 166(2), 195–219.

Ingvar, D. H., & Philipsson, L. (1977). Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Annals of Neurology, 2(3), 230–237.

Jeffrey, P. B. (2017). Mnemonic strategies: Helping students with intellectual and developmental disabilities remember important information. Global Journal of Intellectual and Developmental Disabilities, 2(3), 555–587.

Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26, 319–340.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.

Klimesch, W., Doppelmayr, M., Pachinger, T., & Russegger, H. (1997). Event-related desynchronization in the alpha band and the processing of semantic information. Cognitive Brain Research, 6, 83–94.

Korobejnikova, I. I., & Dzhebrailova, T. D. (2013). Spektral'no-kogerentnye harakteristiki teta-ritma ЕЕG cheloveka pri razlichnoj effektivnosti zapominanija zritel'noj informacii [Spectral and coherent characteristics of a person's EEG theta rhythm with different efficacy of memorizing visual information]. Akademicheskij Zhurnal Zapadnoj Sibiri, 9(4), 76–77 (in Russian).

Kozhedub, R. G., Sviderskaja, N. E., & Taratynova, G. V. (2006). Prostranstvennaja organizacija biopotencialov i original'nost' zritel'nyh obrazov [Spatial organization of biopotentials and originality of visual images]. Zhurnal Vysshej Nervnoj Dejatelnosti, 56(4), 437–446 (in Russian).

Lopatin, M. A. (2014). Mnemonicheskiye priyomy v obuchenii inoyazychnoy leksike [Mnemonic techniques in teaching of innovative lexics]. Filologicheskiye Nauki, Voprosy Teorii i Praktiki, 32, 105–109 (in Russian).

Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering: The brains behind superior memory. Nature Neuroscience, 6(1), 90–95.

Mastropieri, M. M. (1988). Using the keyword method. Teaching Exceptional Children, 20(2), 4–8.

Montembeault, M., Chapleau, M., Jarret, J., Boukadi, M., Laforce, R. J., Wilson, M. A., Rouleau, I., & Brambati, S. M. (2019). Differential language network functional connectivity alterations in Alzheimer's disease and the semantic variant of primary progressive aphasia. Cortex, 117, 284–298.

Moosmann, M., Ritter, P., Krastel, I., Brinka, A., Theesa, S., Blankenburga, F., Taskina, B., Obriga, H., & Villringera, A. (2003). Correlates of alpha rhythm in functional magnetic resonance imagingand near infrared spectroscopy. NeuroImage, 20, 145–158.

Morenko, A. G. (2012). Elektrofiziologichni koreljaty funkcional'nyh staniv, pov’jazanyh iz fonostymuljacijeju ta sluhomotornoju dijal'nistju u cholovikiv [Electrophysiological correlates of functional states associated with phonostimulation and auditory-motor activity of males]. Visnyk of Dnipropetrovsk University, Biology, Medicine, 3(1), 152–161 (in Ukrainian).

Palva, S., Kulashekhar, S., & Palva, J. M. (2011). Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. Journal of Neuroscience, 31(13), 5013–5025.

Pfurtscheller, G., & Lopes da Silva, F. N. (1999). Event-related EEG-MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857.

Raghavachari, S., Lisman, J. E., Tully, M., Madsen, J. R., & Bromfield, E. B. (2006). Theta oscillations in human cortex during a working memory task: evidence for local generators. Neurophysiology, 95(3), 1630–1638.

Razumnikova, O. M. (2005). Chastotno-prostranstvennaja organizacija aktivnosti kory mozga pri konvergentnom i divergentnom myshlenii v zavisimosti ot faktora pola: Soobshhenie II. Analiz kogerentnosti EEG [Frequency-spatial organization of cerebral cortex activity during convergent and divergent thinking depending on the gender factor: Message II. Coherence analysis of EEG]. Fiziologija Cheloveka, 31(3), 39–49 (inRussian).

Razumnikova, O. M., & Finikov, S. B. (2011). Otrazheniye sotsial'noy kreativnostiv osobennosty akhaktivnosti korynachastotakh del'ta-, al'fa2- i gamma2-ritmov [Reflection of social creativity in the peculiarities of cortex activity at the frequencies of delta-, alpha2- and gamma2- rhythms]. Zhurnal Vysshej Nervnoj Dejatelnosti, 61(6), 706–715 (in Russian).

Rebrova, O. J. (2014). Statisticheskij analiz medicinskih dannyh. Primenenie paketa prikladnyh programm Statistica [Statistical analysis of medical data. The use of Statistica application programs package]. Dental Science and Practice, 1, 43–47 (in Russian).

Robinson, D. (1983). Analysisof human EEG responses in the alpha range of frequencies. International Journal of Neuroscience, 22, 81–98.

Roland, E., Ericksson, S., Stone-Elander, S., & Widen, L. (1987). Doesmental activity change the oxidative metabolism of the brain’? Trends in Neurosciences, 7, 430–435.

Roland, P. E., & Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53, 1219–1243.

Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8(9), 657–661.

Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.

Simon, S. S., Hampstead, B. M., Nucci, M. P., Duran, F. S., Fonseca, L. M., Martin, M. M, Ávila, R., Porto, F. G., Brucki, S. D., Martins, C. B., Tascone, L. S., Amaro, E. J., Busatto, G. F., & Bottino, C. C. (2019). Training gains and transfer effects after mnemonic strategy training in mild cognitive impairment: A fMRI study. International Journal of Psychophysiology, S0167–8760(18), 30961–30969.

Simonov, P. V. (1995). Nejrobiologicheskie osnovy kreativnosti [Neurobiological basis of creativity]. Fiziologija Cheloveka, 21(2), 1–9 (in Russian).

Tarasova, I. V., Vol'f, N. V., & Razumnikova, O. M. (2005). Izmeneniya moshchnosti EEG pri obraznom kreativnom myshlenii u muzhchin i zhenshchin [Changes in the power of EEG in imaginative creative thinking of males and females]. Zhurnal Vysshej Nervnoj Dejatelnosti, 55(6), 780–784 (in Russian).

Thaut, M. H., Peterson, D. A., McIntosh, G. C., & Hoemberg, V. (2014). Music mnemonics aid verbal memory and induce learning-related brain plasticity in multiple sclerosis. Frontiers in Human Neuroscience, 8, 395.

Tretiak, T. O., Sokorenko, A. G., Dregval, I. V., & Severynovska, O. V. (2017). Analysis of brain bioelectric activity during verbal-logical thinking of biology students. Regulatory Mechanisms in Biosystems, 8(2), 244–251.

Van Strien, J. W., Hagenbeek, T. E., Stam, C. J., Rombouts, S., & Barkhof, F. (2005). Changes in brain electrical activity during extended continuous word recognition. Neurolmage, 26, 952–959.

Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96(6), 3517–3531.

Vol'f, N. V., Tarasova, I. V., & Razumnikova, O. M. (2009). Polovyye razlichiya v izmeneniyakh kogerentnosti biopotentsialov kory mozga pri obraznom tvorcheskom myshlenii: Svyaz' s effektivnost'yu deyatel'nosti [Sexual differences in the coherence changes of cerebral cortex biopotentials in imaginative creative thinking: the connection with operational efficiency]. Zhurnal Vysshej Nervnoj Dejatelnosti, 59(4), 429–436 (in Russian).

Worthen, J. B., & Hunt, R. R. (Ed.). (2011). Mnemonology: Mnemonics for the 21st century. Psychology Press, New York.

How to Cite
UsenkоY., SeverynovskaО., KоfanІ., DregvalІ., & Znanetska, O. (2019). Power spectrum and coherence of electroencephalograms of young people with the use of mnemotechnics . Regulatory Mechanisms in Biosystems, 10(3), 280-287. https://doi.org/10.15421/021943