Acute toxicity of the iron clathrochelate complexes

  • V. Dukhnitsky National University of Life and Environmental Sciences of Ukraine
  • I. Derkach National University of Life and Environmental Sciences of Ukraine
  • M. Plutenko Taras Shevchenko National University of Kyiv
  • I. Fritsky National University of Life and Environmental Sciences of Ukraine
  • S. Derkach National University of Life and Environmental Sciences of Ukraine
Keywords: toxicology; preclinical studies; average lethal dose; iron (IV); rats; quails.


A new class of highly valent iron compounds is formed by atmospheric oxidation in aqueous media and it is extremely stable both in solid and soluble conditions and may exist indefinitely in a medium without signs of degradation. The first clathrochelate complexes of iron (IV) are infinitely stable in water and readily available from simple, commercially available, inexpensive source materials with surprisingly mild reaction conditions. To create new drugs on their bases, research on their toxicity is required. In this study, the results of preclinical studies of a new iron clathrochelates drug are presented. Experiments were carried out on white rats and quails, which in the previous experiment were divided into five experimental and two control groups. The solution of iron clathrochelate complexes was administered intragastrically in doses 50, 500, 1000, 2000 and 5000 mg/kg, respectively. Our results have shown that there were no grounds for using rats in the advanced experiment because the conducted research has established that iron clathrochelate is non toxic to rats. Thus, the minimum dose of iron clathrochelate complexes did not cause death of quails, and the largest dose caused 100% mortality. The basic experiment was conducted on 6 groups of birds, each consisting of 7 quails. The drug was administered in the following doses: 500, 600, 700, 800, 900, 1000 mg/kg. The monitoring observation of the laboratory birds lasted for 14 days. It has been established that the average lethal dose of clathrochelate of the investigated drug for internal administration in quails is 764 ± 33 mg/kg. According to the classification of chemicals by the degree of danger (State ST 12.1.007-76), iron (IV) clathrochelate complexes correspond to the third class of hazard, and according to the classification of substances for toxicity they are classified as category 4 (low toxicity substances). The prospect of further research is to investigate the pharmacological and toxicological properties of iron (IV) clathrochelate for chronic toxicity.


Batrakov, A., Travkin, O., & Jakovleva, E. (2005). Profilaktika alimentarnoj anemii u porosjat [Prevention of malignant anemia of piglets]. Veterinarija, 12, 44–45 (in Russian).

Bonkovsky, S., & Herbert, L. (1991). Iron and the liver. The American Journal of the Medical Sciences, 301(1), 32–43.

Broide, E., Reifen, R., Matalon, S., Berkovich, Z., & Shirin, H. (2018). Expression of duodenal iron transporter proteins in diabetic patients with and without iron deficiency anemia. Journal of Diabetes Research, 6, 1–4.

Collins, J. (2002). TAML oxidant activators: A new approach to the activation of hydrogen peroxide for environmentally significant problems. Accounts of Chemical Research, 35(9), 782–790.

Commission of the European Communities: Council Directive of 18 December 1986 on the Lows, regulating the Application of Principles of Good Laboratory Practice and the Verification of Their Applications for Tests on Chemical Substances (87/18/EEC) (1991). The Rules Governing Medicinal Products in the European Community, 1, 145–146.

De la Cruz-Góngora, V., Villalpando, S., & Shamah-Levy, T. (2018). Prevalence of anemia and consumption of iron-rich food groups in Mexican children and adolescents. Salud Pública de México, 60(3), 291–300.

Derkach, I. (2017). Suchasni tendencii' na vitchyznjanomu rynku ferumvmisnyh preparativ dlja tvaryn [Modern trends of the Ukrainian market of ironcontaining products for animals]. Naukovyj Visnyk L'vivs'kogo Nacional'nogo Universytetu Veterynarnoi' Medycyny ta Biotehnologij imeni S. Z. G'zhyc'kogo, 19(78), 23–25 (in Ukrainian).

Derkach, I., Derkach, S., & Sotnichenko, I. (2018). Ferum u skladi kormovyh dobavok, gotovyh kormiv ta premiksiv na farmacevtychnomu rynku v Ukrai'ni [Iron in the content of feed additives, prepared feeds and premixes on the pharmaceutical market in Ukraine]. Naukovyj Visnyk L'vivs'kogo Nacional'nogo Universytetu Veterynarnoi' Medycyny ta Biotehnologij imeni S. Z. G'zhyc'kogo, 83, 290–294 (in Ukrainian).

Diel, J., Bertoldi, A., & Pizzol, T. (2018). Iron salts and vitamins: Use, purchase and sources of obtainment among children in Brazil. Cad Saude Publica, 34(9), e00133317.

Dos Santos Vieira, D. A., Hermes Sales, C., Galvão Cesar, C. L., Marchioni, D. M., & Fisberg, R. M. (2018). Influence of haem, non-haem, and total iron intake on metabolic syndrome and its components: A population-based study. Nutrients, 10(3), 314.

Dukhnitsky, V. B., Derkach, I. M., Plutenko, M. O., Fritsky, I. O., & Derkach, S. S. (2018). Vyznachennja parametriv gostroi' toksychnosti ferumu (IV) na bilyh myshah [Determination of the accumulative toxicity parameters of iron (IV) on white mice]. Ukrainian Journal of Ecology, 8(2), 308–312 (in Ukrainian).

England, J., Bigelow, О., Katherine, M., Heuvelen, V., Farquhar, E., Martinho, M., Meier, K., Frisch, J., Münck, E., & Que, L. (2014). An ultra-stable oxoiron (IV) complex and its blue conjugate base. Chemical Science, 5, 1204–1215.

Ganz, T. (2013). Systemic iron homeostasis. Physiological Reviews, 93(4), 1721–1741.

Geisser, P., Baer, M., & Schaub, E. (1992). Structure/histotoxicity relationship of parenteral iron preparations. Arzneimittel for Schung, 42(12), 1439–1452.

Groves, J. T. (2006). High-valent iron in chemical and biological oxidations. Journal of Inorganic Biochemistry, 100(4), 434–447.

Gutyj, B., Martyshchuk, T., Bushueva, I., Semeniv, B., Parchenko, V., Kaplaushenko, A., Magrelo, N., Hirkovyy, A., Musiy, L., & Murska, S. (2017). Morphological and biochemical indicators of blood of rats poisoned by carbon tetrachloride and subject to action of liposomal preparation. Regulatory Mechanisms in Biosystems, 8(2), 304–309.

Jiefen, C., Yinping, L., Peng, Y., Qiping, Z., Jingfeng, W., Yongzhou, C., & Peng, W. (2017). A novel low molecular weight Enteromorpha polysaccharide-iron (III) complex and its effect on rats with iron deficiency anemia (IDA). International Journal of Biological Macromolecules, 108, 412–418.

Kalynovska, L. (2014). Zareyestrovani v Ukrayini preparaty dlya profilaktyky i likuvannya tvaryn pry anemiyi [Medicines which are registered in Ukraine for the prevention and treatment of animals with anemia]. Naukovo-Tehnichnyj Byuleten Instytutu Biologiyi Tvaryn i Derzhavnogo Naukovo-Doslidnogo Kontrolnogo Instytutu Vetpreparativ ta Kormovyh Dobavok, 15(1), 279–283 (in Ukrainian).

Killip, S., & Bennett, M. (2008). Iron deficiency anemia. American Family Physician, 78(8), 671–678.

Kim, J. C., Wilcock, P., & Bedford, M. R. (2018). Iron status of piglets and impact of phytase superdosing on iron physiology: A review. Animal Feed Science and Technology, 235, 8–14.

Kocjumbas, I. (2006). Doklinichni doslidzhennja veterynarnyh likars'kyh zasobiv [Preclinical studies of veterinary medicinal products]. Triada Pljus, Lviv (in Ukrainian).

Kosenko, M. V., Malyk, O. G., & Kocjumbas, I. J. (1997). Toksykologichnyj kontrol' novyh zasobiv zahystu tvaryn [Toxicological control of new animal protection means]. Kyiv (in Ukrainian).

Maes, D., Steyaert, M., Vanderhaeghe, C., López Rodríguez, A., de Jong, E., Del Pozo Sacristán, R., Vangroenweghe, F., & Dewulf, J. (2011). Comparison of oral versus parenteral iron supplementation on the health and productivity of piglets. Veterinary Record, 19, 168–188.

Meier, T., Schropp, P., Pater, C., Leoni, A., Khov-Tran, V., & Elford, P. (2011). Physicochemical and toxicological characterization of a new generic iron sucrose preparation. Arzneimittelforschung, 61(2), 112–119.

Miranda, M., & Lawson, H. (2018). Ironing out the details: Untangling dietary iron and genetic background in diabetes. Nutrients, 10(10), 1–9.

Peña-Rosas, J., De-Regil, L., Gomez Malave, H., Flores-Urrutia, M., & Dowswell, T. (2015). Intermittent oral iron supplementation during pregnancy. Cochrane Database System Review, 19(10), 1–9.

Pillay, D., Wham, C., Moyes, S., Muru-Lanning, M., The, R., & Kerse, N. (2018). Intakes, adequacy, and biomarker status of iron, folate, and vitamin B12 in māori and non-māori octogenarians: Life and living in advanced age: A cohort study in New Zealand (LiLACS NZ). Nutrients, 10(8), 1–9.

Stefanyk, V. Y., Stravskyy, Y. S., & Kobyliukh, I. B. (2017). Supozytorii' iz vmistom nanochastynok ferumu v korekcii' antyoksydantnogo zahystu organizmu koriv pislja otelu [Superpositions with nanoparticles of the ferum in the correction of the antioxidant protection of the organism of cows after calving]. NV LNU Veterynarnoji Medycyny ta Biotehnologij, Serija Veterynarni Nauky, 82, 201–204 (in Ukrainian).

Streyl, K., Carlstron, J., Dantos, E., Mendoza, R., Islas, J., & Bhushan, C. (2015). Field evaluation of the effectiveness of an oral toltrazuril and iron combination (baycox® iron) in maintaining weaning weight by preventing coccidiosis and anaemia in neonatal piglets. Parasitol Research, 114(1), 193–200.

Tang, L. L., Gunderson, W. A., Weitz, A. C., Hendrich, M. P., Ryabov, A. D., & Collins, T. J. (2015). Activation of dioxygen by a TAML activator in reverse micelles: Characterization of an FeIII FeIV dimer and associated catalytic chemistry. Journal American Chemical Society, 137(30), 9704–9715.

Tang, L. L., Ryabov, A. D., & Collins, T. J. (2016). Kinetic evidence for reactive Dimeric TAML iron species in the catalytic oxidation of nadh and a dye by O2 in aot reverse micelles. American Chemical Society Catalysis, 6(6), 3713–3718.

Terpilowska, S., & Siwicki, A. (2018). Interactions between chromium (III) and iron (III), molybdenum (III) or nickel (II). Cytotoxicity, genotoxicity and mutagenicity studies. Chemosphere, 201, 780–789.

Terpilowska, S., & Siwicki, A. (2019). Pro- and antioxidant activity of chromium (III), iron (III), molybdenum (III) or nickel (II) and their mixtures. Chemical Biolical Interaction, 298, 43–51.

Todoriuk, V. B., Hunchak,V. M., Gutyj, B. V., Gufriy, D. F., Hariv, I. I., Khomyk, R. I., & Vasivhttps, R. O. (2018). Preclinical research of the experimental preparation “Ferosel T”. Ukrainian Journal of Veterinary and Agricultural Sciences, 1, 3–9.

Tomyn, S., Shylin, S., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V., & Fritsky, I. (2017). Indefinitely stable iron (IV) cage complexes formed in water by air oxidation. Nature Communications, 8, 1–8.

Vrednye veshhestva. Klassifikacija i obshhie trebovanija bezopasnosti. GOST 12.1.007-76 (1982) [Classification and general safety requirements. State ST 12.1.007-76]. Izdatel'stvo Standartov, Moscow (in Russian).

Walter, T., Olivares, M., Pizarro, F., & Muñoz, C. (1997). Iron, anemia, and infection. Nutrition Reviews, 55(4), 111–124.

How to Cite
Dukhnitsky, V., Derkach, I., Plutenko, M., Fritsky, I., & Derkach, S. (2019). Acute toxicity of the iron clathrochelate complexes . Regulatory Mechanisms in Biosystems, 10(3), 276-279.