Prospects of use of Caltha palustris in soil plant-microbial eco-electrical biotechnology

  • I. B. Rusyn Lviv Polytechnic National University
  • V. V. Vakuliuk Lviv Polytechnic National University
  • O. V. Burian Lviv Polytechnic National University
Keywords: plant-microbial bioelectricity; electro-producing microorganisms; renewable energy; green buildings

Abstract

Soil plant-microbial biosystems are a promising sustainable technology, resulting in electricity as final product. Soil microbes convert organic products of plant photosynthesis and transfer electrons through an electron transport chain onto electrodes located in soil. This article presents a study of prospects for the generation of bioelectricity by a soil plant-microbial electro-biotechnological system with Caltha palustris L. (Ranunculaceae), a marshy winter-hardy plant that develops early in the spring and is widespread in the moderate climatic zone, in clay-peat medium and with introduction of Lumbricus terrestris L. (Lumbricidae). The experiment was carried out in the wetlands of the Ukrainian Polissya and the Carpathian mountains in situ, and on the balconies and terraces of buildings to assess the possibilities of using green energy sources located directly in buildings. The electrodes were placed stationary in the soil to measure the values of bioelectric potential and current strength. We monitored the bioelectricity indices in open circle and under load using external resistors, and calculated the current density and power density, normalized to the soil surface covered by plants and electrodes. The revealed high maximal values of the bioelectric potential, 1454.1 mV, and current, 11.2 mA, and high average bioelectricity values in optimal natural conditions in wetlands in situ make C. palustris a promising component of soil plant-microbial bio-electrotechnology. We analyzed the influence of temperature and precipitation on the functioning of the soil plant-microbial biosystem. The use of thickets of C. palustris in wetlands in situ, as a stable source of plant-microbial eco-electricity in the summer, is complicated by the fact that the plant sensitively reacts to long periods of high temperature and periods of drought, which is accompanied by decrease in the level of bioelectric parameters. The cultivation of the marsh plant C. palustris as a component of electro-biosystems is possible on terraces and balconies of buildings. The cultivation of C. palustris in clay-peat soil with electrode system for production of eco-electricity on shaded balconies and terraces of buildings requires optimal irrigation, lighting, and introduction of L. terrestris into the substrate, which increase the bioelectricity values of this biotechnology.

References

Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D., & Brun, J.-J. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64(2), 161–182.

Chen, Z., Huang, Y. C., Liang, J. H., Zhao, F., & Zhu, Y. G. (2012). A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresource Technology, 108, 55–59.

Dai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015). Electrical energy production from forest detritus in a forested wetland using microbial fuel cells. Global Chance Biology Bioenergy, 7, 244–252.

De Schamphelaire, L., Van Den Bossche, L., Hai, S. D., Höfte, M., Boon, N., Rabaey, K., & Verstraete, W. (2008). Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science and Technology, 42(8), 3053–3058.

Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72(3), 313–327.

Edwards, C. A., Arancon, N. Q., & Sherman, R. L. (Eds). (2010). Vermiculture technology: Earthworms, organic wastes, and environmental management. CRC Press, Taylor & Francis Group, Boca Raton.

Helder, M., Chen, W. S., Van Der Harst, Е. J. M., Strik, D. P. B. T. B., Hamelers, H. V. M., Buisman, C. J. N., & Potting, J. (2013). Electricity production with living plants on a green roof: Environmental performance of the plant-microbial fuel cell. Biofuels Bioproducts and Biorefining, 7, 52–64.

Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2012). The flat-plate plant microbial fuel cell: The effect of a new design on internal resistances. Biotechnology for Biofuels, 5, 70.

Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresourсe Technology, 101(10), 3541–3547.

Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2011). New plant growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 104, 417–423.

Hubenova, Y., & Mitov, M. (2012). Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry, 87, 185–191.

Hutsch, B. W., Augustin, J., & Merbach, W. (2002). Plant rhizodeposition – an important source for carbon turnover in soils. Journal of Plant Nutrition and Soil Science, 165(4), 397–407.

Jones, D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 163, 459–480.

Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49.

Khomyakov, N. V. (2009). Deystviye pishchevaritelnoy zhidkosti dozhdevykh chervey na mikroorganizmy [Effect of digestive fluid of earthworms on microorganisms]. Moscow (in Russian).

Kuijken, R. C. P., Snel, J., Bouwmeester, H., & Marcelis, L. F. M. (2011). Quantification of exudation for the plant-microbial fuel cell. Communications in Agricultural and Applied Biological Sciences, 76(2), 15–18.

Kuzyakov, Y., & Domanski, G. (2000). Carbon input by plants into the soil. Journal of Soil Science and Plant Nutrition, 163(4), 421–431.

Liu, S., Song, H., Li, X., & Yang, F. (2013). Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. International Journal of Photoenergy, 2013, Article ID 172010.

Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A. E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: The microbe electric’s physiology, ecology, and practical applications. Advances in Microbial Physiology, 59, 1–100.

Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121.

Lynch, J. M., & Whipps, J. M. (1990). Substrate flow in the rhizosphere. Plant and Soil, 129(1), 1–10.

Moqsud, M. A., Yoshitake, J., Bushra, Q. S., Hyodo, M., Omine, K., & Strik, D. P. B. T. B. (2015). Compost in plant microbial fuel cell for bioelectricity generation. Waste Management, 36, 63–69.

Moroziuk, S. S., & Protopovа, V. V. (2007). Travianysti roslyny Ukrainy [Herbaceous plants of Ukraine]. Bogdan, Ternopil (in Ukrainian).

Nitisoravut, R., Thanh, C. N. D., & Regmi, R. (2017). Microbial fuel cells: Advances in electrode modifications for improvement of system performance. International Journal of Green Energy, 14(8), 712–723.

Oon, Y.-L., Ong, S.-A., Ho, L.-N., Wong, Y.-S., Oon, Y.-S., Lehl, H. K., & Thung, W.-E. (2015). Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresource Technology, 186, 270–275.

Picot, M., Lapinsonniere, L., Rothballer, M., & Barriere, F. (2011). Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosensors and Bioelectronics, 28, 181–188.

Rothballer, M., Engel, M., Strik, D. P. B. T. B., Timmers, R. A., Schloter, M., & Hartmann, A. (2011). Comparison of bacterial rhizosphere communities from plant microbial fuel cells with different current production by 454 amplicon sequencing. Communications in Agricultural and Applied Biological Sciences, 76(2), 31–32.

Rusyn, I. B. (2014). Bioelectricity of plant-microbe associations of urban soil in a park areas. In: Proceedings of the 1st International Academic Congress “Fundamental and Applied Studies in the Pacific аnd Atlantic Оceans Сountries”, Tokyo University Press, Tokyo. Vol. 2. Pp. 75–78.

Rusyn, I. B., & Hamkalo, К. R. (2018). Bioelectricity production in an indoor plant-microbial biotechnological system with Alisma plantago-aquatica. Acta Biologica Szegediensis, 62(2), 170–179.

Rusyn, I. B., & Hamkalo, К. R. (2019). Use of Carex hirta in electro-biotechnological systems on green roofs. Regulatory Mechanisms in Biosystems, 10(1), 39–44.

Rusyn, I. B., & Medvediev, O. V. (2016). Sposib otrymannia biolohichnoi electryky z hlybynnykh shariv gruntu [Biological method of producing bioelectricity from deep soil layers]. Patent of Ukraine 112093, filed March 9, 2016, issued December 12, 2016 (in Ukrainian).

Rusyn, I. B., & Medvediev, O. V. (2018). Sposib otrymannia bioelektryky iz konteinera z roslynamy za dopomohoiu systemy elektrodiv [The method for bioelectricity obtaining from a container with plants using a system of electrodes]. Patent of Ukraine 122556, filed August 28, 2017, issued January 10, 2018 (in Ukrainian).

Rusyn, I. B., & Valko, B. T. (2019). Container landscaping with Festuca arundinaceae as а mini bioelectrical system in modern buildings. International Journal of Energy for a Clean Environment, 20(2), in print.

Schuettpelz, E., & Hoot, S. B. (2004). Phylogeny and biogeography of Caltha (Ranunculaceae) based on chloroplast and nuclear DNA sequences. American Journal of Botany, 91(2), 247–253.

Strik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., & Buisman, C. J. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876.

Strik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J., Hamelers, H. V., & Buisman, C. J. (2011). Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29(1), 41–49.

Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology and Biochemistry, 74, 1271–1273.

Tender, L. M., Gray, S. A., Groveman, E., Lowy, D. A., Kauffman, P., Melhado, J., Tyce, R. C., Flynn, D., Petrecca, R., & Dobarro, J. (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Sources, 179(2), 571–575.

Timmers, R. A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., Schulz, S., Schloter, M., Hartmann, A., Hamelers, B., & Buisman, C. (2012). Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 94(2), 537–548.

Timmers, R. A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Long-term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 86(3), 973–981.

Wetser, K. (2016). Electricity from wetlands: Technology assessment of the tubular plant microbial fuel cell with an integrated biocathode. Part two: PMFCs applied in wetlands. Wageningen University, Wageningen.

Wetser, K., Dieleman, K., Buisman, C., & Strik, D. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649.

Wetser, K., Liu, J., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543–550.

Yadav, A. K., Dash, P., Mohanty, A., Abbassi, R., & Mishra, B. K. (2012). Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecological Engineering, 47, 126–131.

Zhang, F., Tian, L., & He, Z. (2011). Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. Journal of Power Sources, 196, 9568–9573.

Published
2019-05-18
How to Cite
Rusyn, I. B., Vakuliuk, V. V., & Burian , O. V. (2019). Prospects of use of Caltha palustris in soil plant-microbial eco-electrical biotechnology . Regulatory Mechanisms in Biosystems, 10(2), 233-238. https://doi.org/10.15421/021935