Influence of chromium citrate on oxidative stress in the tissues of muscle and kidney of rats with experimentally induced diabetes

  • О. О. Sushko Institute of Animal Biology NAAS
  • R. J. Iskra Institute of Animal Biology NAAS
  • L. I. Ponkalo Institute of Animal Biology NAAS
Keywords: antioxidant defense; lipid peroxidation; alloxan; hyperglycemia.


Chromium is one of the important trace elements that is essential for carbohydrate, protein and lipid metabolism. Chromium improves glucose metabolism and reduces insulin resistance due to increased insulin sensitivity. Therefore, it is important to consider the use of chromium citrate as a nutritional supplement with potential hypoglycemic and hypolipidemic effects. In this research work, we investigated the activity of the antioxidant system and the level of lipid hydroperoxides in the tissues of skeletal muscles and kidneys of experimental diabetic rats and for rats which received in their daily diet chromium citrate in the amounts 0.1 and 0.2 μg/mL of water. We induced the experimental model of diabetes by intraperitoneal injection of alloxan in the amount 150 mg/kg of body weight of the animals. We monitored glucose levels by measuring daily glucose levels with a portable glucose meter. For research, we selected animals with a glucose level > 11.1 mmol/L. We monitored the body weight of rats. On the 40th day of the study, we withdrew the animals from the experiment by decapitation. We selected the tissue for research, namely skeletal muscles and kidneys. In samples of the tissue homogenates, we measured the activity of antioxidant enzymes and the content of lipid peroxide oxidation products. As a result of our research, we found that the products of lipid peroxide oxidation and glutathione peroxidase activity increased in skeletal muscle of animals with diabetes mellitus. The activity of glutathione reductase, catalase, superoxide dismutase, and the content of reduced glutathione decreased at the same time. In the kidneys of diabetic rats, the activity of glutathione peroxidase, glutathione reductase, catalase and content of lipid hydroperoxides increased but the activity of superoxide dismutase and the content of reduced glutathione decreased. The addition of chromium citrate to the diet of animals in amounts 0.1 and 0.2 μg/mL led to the suppression of oxidative stress. The activity of catalase, glutathione peroxidase and the content of lipid hydroperoxides, TBA-positive substances decreased. Also, the activity of superoxide dismutase increased with the addition of chromium citrate. These results indicate normalization of antioxidant defense in the skeletal muscle and kidneys of experimental rats with experimental diabetes given chromium citrate in the amount 0.1 mg/mL of water.


Aragno, M., Mastrocola, R., Catalano, M. G., Brignardello, E., Danni, O., & Boccuzzi, G. (2004). Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes, 53(4), 1082–1088.

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal, 24(5), 547–553.

Bergmeyer, H. U., Gawehn, K., & Grassl, M. (1974) Methods of enzymatic analysis. In: Bergmeyer, H. U. (Ed.). Verlag Chemie. Wienheim. Vol. 1, 481–482.

Chandirasegaran, G., Elanchezhiyan, C., & Ghosh, K. (2018). Effects of berberine chloride on the liver of streptozotocin-induced diabetes in albino Wistar rats. Biomedicine and Pharmacotherapy, 99, 227–236.

Christophersen, B. O. (1969). Reduction of linolenic acid hydroperoxide by a glutathione peroxidase. Biochimica et Biophysica Acta, 176(3), 463–470.

Coleman, S. K., Rebalka, I. A., D’Souza, D. M., & Hawke, T. J. (2015). Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World Journal of Diabetes, 6(17), 1323–1336.

Dhama, K., Munjal, A., & Iqbal, H. M. (2017). Recent advances and novel strategies for the development of biomedical therapeutics: State-of-the-art and future perspectives. International Journal of Pharmacology, 13(7), 929–933.

Dhanya, R., Arya, A. D., Nisha, P., & Jayamurthy, P. (2017). Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Frontiers in Pharmacology, 8, 336.

Dubinina, E. E., Yefimova, L. F., Sofronova, L. N., & Geronimus, A. L. (1988). Aktivnost' i izofermentnyj spektr superoksiddismutazy jeritrocitov i plazmy krovi cheloveka [Activity and isozyme spectrum of superoxide dismutase of erythrocytes and human blood plasma]. Laboratornoe Delo, 10, 30–33 (in Russian).

Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23(5), 599–622.

Feng, W., Mao, G., Li, Q., Wang, W., Chen, Y., Zhao, T., Li, F., Zou, Y., Wu, H., Yang, L., & Wu, X. (2015). Effects of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats: A dose-response and curative effects study. Journal of diabetes investigation, 6(4), 396–407.

Fu, G. S., Huang, H., Chen, F., Wang, H. P., Qian, L. B., Ke, X. Y., & Xia, Q. (2007). Carvedilol ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 567(3), 223–230.

Guan, Y., Cui, Z. J., Sun, B., Han, L. P., Li, C. J., & Chen, L. M. (2016). Celastrol attenuates oxidative stress in the skeletal muscle of diabetic rats by regulating the AMPK-PGC1α-SIRT3 signaling pathway. International Journal of Molecular Medicine, 37(5), 1229–1238.

Katsumata, K., Katsumata, Y., Ozawa, T., & Katsumata, T. (1999). Potentiating effects of combined usage of three sulfonylurea drugs on the occurrence of alloxan-induced diabetes in rats. Hormone and Metabolic Research, 25, 125–126.

Korobeynikova, S. N. (1989). Modifikacija opredelenija produktov POL v reakcii s tiobarbiturovoj kislotoj [Modification of definition of lipid peroxidation products in reaction with thiobarbituric acid]. Laboratornoye Delo, 7, 8–9 (in Russian).

Korolyuk, M. A., Ivanova, M. I., Maiorova I. T., & Tokarev, V. E. (1988). Metod opredelenija aktivnosti katalazy [Method for determination of catalase activity]. Laboratornoye Delo, 1, 16–19 (in Russian).

Krause, M. P., Al-Sajee, D., D'Souza, D. M., Realka, I. A., Moradi, J., Riddell, M. C., & Hawke, T. J. (2013). Impaired macrophage and satellite cell infiltration occurs in a muscle-specific fashion following injury in diabetic skeletal muscle. PLoS One, 8(8), e70971.

Król, E., & Krejpcio, Z. (2010). Chromium (III) propionate complex supplementation improves carbohydrate metabolism in insulin-resistance rat model. Food and Chemical Toxicology, 48(10), 2791–2796.

Kumawat, M., Sharma, T. K., Singh, I., Singh, N., Ghalaut, V. S., Vardey, S. K., & Shankar, V. (2013). Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. North American Journal of Medical Sciences, 5(3), 213–219.

Lai, M. H. (2008). Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and E supplementation for type 2 diabetes mellitus. Journal of Clinical Biochemistry and Nutrition, 43(3), 191–198.

Lewicki, S., Zdanowski, R., Krzyzowska, M., Lewicka, A., Debski, B., Niemcewicz, M., & Goniewicz, M. (2014). The role of chromium III in the organism and its possible use in diabetes and obesity treatment. Annals of Agricultural and Environmental Medicine, 21(2), 331–335.

Li, H., Meng. X., Wan, W., Liu, H., Sun, M., Wang, H., & Wang, J. (2018). Effects of chromium picolinate supplementation on growth, body composition, and biochemical parameters in Nile tilapia Oreochromis niloticus. Fish Physiology and Biochemistry, 44(5), 1265–1274.

Lipko, M., & Debski, B. (2018). Mechanism of insulin-like effect of chromium (III) ions on glucose uptake in C2C12 mouse myotubes involves ROS formation. Journal of Trace Elements in Medicine and Biology, 45, 171–175.

Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

Martin, J., Wang, Z. Q., Zhang, X. H., Wachtel, D., Volaufova, J., Matthews, D. E., & Cefalu, W. T. (2006). Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care, 29(8), 1826–1832.

Mironchik, V. V. (1998). Sposob opredeleniya gidroperekisey lipidov v biologicheskikh tkanyakh [Method of determining the content of lipid hydroperic acids in biological tissues]. Avtorskoye Svidetel'stvo № 1084681 SSSR, MKI G №33/48. (SSSR). № 3468369/2813; Byul. № 13.

Moin, V. M. (1986). Prostoj i specificheskij metod opredelenija aktivnosti glutationperoksidazy v jeritrocitah [A simple and specific method for the determination of glutathione peroxidase in erythrocytes]. Laboratornoye Delo, 12, 724–727 (in Russian).

Nagarjun, S., Dhadde, S. B., Veerapur, V. P., Thippeswamy, B. S., & Chandakavathe, B. N. (2017). Ameliorative effect of chromium-D-phenylalanine complex on indomethacin-induced inflammatory bowel disease in rats. Biomedicine and Pharmacotherapy, 89, 1061–1066.

Neve, J., Wasociz, W., Quivy, D., Parij, N., Van Gossum, A., & Peretz, A. (1995). Lipid peroxidation assessed by serum thiobarbituric acid reactive substances in healthy subjects and in patients with pathologies known to affect trace element status. Biological Trace Element Research, 41, 147–153.

Nishimura, C., & Kuriyama K. (1985). Alteration of lipid peroxide and endogenous antioxidant contents in retina of streptozotocin-induced diabetic rats: Effect of vitamin A administration. The Japanese Journal of Pharmacology, 37(4), 365–372.

Ozaki, K., Terayama, Y., Matsuura, T., & Narama, I. (2018). Effect of combined dyslipidemia and hyperglycemia on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats. Journal of Toxicologic Pathology, 31(2), 125–133.

Pecoits-Filho, R., Abensur, H., Betônico, C. C., Machado, A. D., Parente, E. B., Queiroz, M., Salles, J. E., Titan, S., & Vencio, S. (2016). Interactions between kidney disease and diabetes: dangerous liaisons. Diabetology and Metabolic Syndrome, 8, 50.

Peruzzu, A., Solinas, G., Asara, Y., Forte, G., Bocca, B., Tolu, F., Malaguarnera, L., Montella, A., & Madeddu, R. (2015). Association of trace elements with lipid profiles and glycaemic control in patients with type 1 diabetes mellitus in Northern Sardinia, Italy: An observational study. Chemosphere, 132, 101–107.

Praveena, S., Pasula, S., & Sameera, K. (2013). Trace elements in diabetes mellitus. Journal of Clinical and Diagnostic Research, 7(9), 1863–1865.

Qiao, W., Peng, Z. L., Wang, Z. S., Wei, J., & Zhou, A. G. (2009). Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biological Trace Element Research, 131(2), 133–142.

Refaie, F. M., Esmat, A. Y., Mohamed, A. F., & Aboul Nour, W. H. (2009). Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats. Biometals, 22(6), 1075–1087.

Siddiqui, K., Bawazeer, N., & Joy, S. S. (2014). Variation in macro and trace elements in progression of type 2 diabetes. Scientific World Journal, 2014, 461591.

Stallings, D. M., Hepburn, D. D., Hannah, M., Vincent, J. B., & O’Donnell, J. (2006). Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster. Mutation Research, 610, 101–113.

Stanieka, H., & Wójciak, R. W. (2018). The combined effect of supplementary Cr(III) propionate complex and iron deficiency on the chromium and iron status in female rats. Journal of Trace Elements in Medicine and Biology, 45, 142–149.

Sundaram, B., Aggarwal, A., & Sandhir, R. (2013). Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats. Journal of Trace Elements in Medicine and Biology, 27(2), 117–121.

Sundaram, B., Singhal, K., & Sandhir, R. (2012). Ameliorating effect of chromium administration on hepatic glucose metabolism in streptozotocin-induced experimental diabetes. Biofactors, 38(1), 59–68.

Valera, P., Zavattari, P., Albanese, S., Cicchella, D., Dinelli, E., Lima, A., & De Vivo, B. (2014). A correlation study between multiple sclerosis and type 1 diabetes incidences and geochemical data in Europe. Environmental Geochemistry and Health, 36(1), 79–98.

Vincent, J. B. (2015). Is the pharmacological mode of action of chromium (III) as a second messenger? Biological Trace Element Research, 166(1), 7–12.

Vlizlo, V. V., Fedoruk, R. S., & Ratych, I. B. (2012). Laboratorni metody doslidzhen u biolohiyi, tvarynnytstvi ta veterynarniy medytsyni [Laboratory methods of research in biology, veterinary medicine: A guide]. Spolom, Lviv (in Ukrainian).

Wang, S., Wang, J., Zhang, X. N., Hu, L., Fang, Z., Huang, Z., & Shi, P. (2016). Trivalent chromium alleviates oleic acid induced steatosis in SMMC-7721 cells by decreasing fatty acid uptake and triglyceride synthesis. Biometals, 29(5), 881–892.

Wierusz-Wysocka, B., Wysocki, H., Byks, H., Zozulinska, D., Wykretowicz, A., & Kazmierczak, M. (1995). Metabolic control quality and free radical activity in diabetic patients. Diabetes Research and Clinical Practice, 27(3), 193–197.

Xie, M. J., Yang, X. D., Liu, W. P., Yan, S. P., & Meng, Z. H. (2010). Insulin-enhancing activity of a dinuclear vanadium complex: 5-chloro-salicylaldhyde ethylenediamine oxovanadium (V) and its permeability and cytotoxicity. Journal of Inorganic Biochemistry, 104, 851–857.

Yang, J. J., Xu, Y. Y., Qian, K., Zhang, W., Wu, D., & Wang, C. (2016). Effects of chromium-enriched Bacillus subtilis KT260179 supplementation on growth performance, caecal microbiology, tissue chromium level, insulin receptor expression and plasma biochemical profile of mice under heat stress. British Journal of Nutrition, 115(5), 774–781.

Yang, X., Palanichamy, K., Ontko, A. C., Rao, M. N., Fang, C. X., Ren, J., & Screejayan, N. (2005). A newly synthetic chromium complex-chromium (phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance. FEBS Letters, 579(6), 1458–1464.

Yin, R. V., & Phung, O. J. (2015). Effect of chromium supplementation on glycated hemoglobin and fasting plasma glucose in patients with diabetes mellitus. Nutrition Journal, 14, 14.

Zhang, Q., Xiao, X., Zheng, J., Li, M., Yu, M., Ping, F., Wang, X., & Wang, T. (2017). Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring. Experimental Biology and Medicine (Maywood), 242(14), 1444–1452.

How to Cite
SushkoО. О., Iskra, R. J., & Ponkalo, L. I. (2019). Influence of chromium citrate on oxidative stress in the tissues of muscle and kidney of rats with experimentally induced diabetes . Regulatory Mechanisms in Biosystems, 10(2), 209-214.