Differentiation of maize breeding samples by β-carotene content

Keywords: Zea mays; carotenoids; inbred; grain; ultra performance liquid chromatography


Plant carotenoids are important micronutrients in the diet of humans and animals, since they act as precursors for the synthesis of vitamin A in animal cells. The most effective precursor to the vitamin A biosynthesis is β-carotene. Increasing the β-carotene content in maize grain as an important feed and food crop is an urgent task for plant selection. The purpose of this work was to differentiate maize breeding samples from the Dnipro breeding program by the β-carotene content in mature grain. Maize grain of 18 inbreds harvested in 2015 and 5 inbreds harvested in 2016 was researched. Determination of β-carotene content in matured dry grain was carried out after petroleum ether extraction and ultra performance liquid chromatography (UPLC) in the mobile phase of methanol/acetonitrile. The β-carotene content in the grain of genotypes from the Dnipro breeding program was on average 1.020 mg/kg for inbreds grown in 2015, and 0.672 mg/kg for inbreds grown in 2016. These values correspond to the β-carotene content in the grain of the majority of genotypes from world breeding programs selected by methods of classical selection. The inbred DKV3262 with white grain had the smallest content of β-carotene (0.076 mg/kg), while the yellow-coloured line DKD9066 had the highest one (2.146 mg/kg). The variation in the grain β-carotene content in different years of maize cultivation was noted. Inbreds of flint and semident maize showed the general tendency to increase the β-carotene content in grain compared with dent ones. The distribution of the studied inbreds on germplasm types showed the significant variation of β-carotene content in grain and the incidence of relatively high values in all germplasms analyzed. Inbreds containing more than 1.5 mg of β-carotene per 1 kg of grain, DK239, DK206A, DK212, DKD9066 and DKE-1, are emphasized as promising for the selection to increase the content of valuable micronutrients.


Alamu, E. O., Menkir, A., Mziya-Dixon, B., & Olaofe, O. (2014). Effects of husk and havest time on carotenoid content and acceptability of roasted fresh cobs of orange maize hybrids. Food Science and Nutrition, 2(6), 811–820.

Alós, E., Rodrigo, M. J., & Zacarias, L. (2016). Manipulation of carotenoid con tent in plants to improve human health. Subcellular Biochemistry, 79, 311–343.

Aluru, M., Xu, Y., Guo, R., Wang, Z., Li, S., White, W., Wang, K., & Rodermel, S. (2008). Generation of transgenic maize with enhanced provitamin A content. Journal of Experimental Botany, 59(13), 3551–3562.

Banerjee, A., & Sharkey, T. D. (2014). Methylerythritol 4-phosphate (MEP) path way metabolic regulation. Natural Product Reports, 31(8), 1043–1055.

Berardo, N., Mazzinelli, Y., Valoti, P., Lagana, P., & Redaelli, R. (2009). Charac terization of maize germplasm for the chemical composition of the grain. Journal of Agricultural and Food Chemistry, 57(6), 2378–2384.

Berman, J., Zorrilla-López, U., Sandmann, G., Capell, T., Christou, P., & Zhu, C. (2017). The silencing of carotenoid β-hydroxylases by RNA interference in different maize genetic backgrounds increases the β-carotene content of the endosperm. International Journal of Molecular Sciences, 18(12), 2515–2528.

Burt, A. J., Grainger, C. M., Young, J. C., Shelp, B. J., & Lee, E. A. (2010). Impact of postharvest handling on carotenoid concentration and composition in high-carotenoid maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 58, 8286–8292.

Cardoso, W. S., Borêm, A., Karam, D., Rios, S. de A., & Paes, M. C. D. (2015). Influence of the moisture at harvest and drying process of the grains on the level of carotenoids in maize (Zea mays). Food Science and Technology, 35(3), 481–486.

Craft, N. E. (2001). Chromatographic techniques for carotenoid separation. Current Protocols in Food Analytical Chemistry, 1, F2.3.1-F2.3.15.

Díaz-Gómez, J., Moreno, J. A., Angulo, E., Sandmann, G., Zhu, C., Capell, T., & Nagareda, C. (2017a). Provitamin A carotenoids from an engineered high-carotenoid maize are bioavaible and zeaxanthin does not compromise β-caro tene absorption in poultry. Transgenic Research, 26(5), 591–601.

Díaz-Gómez, J., Ramos, A. J., Zhu, C., Martin-Belloso, O., & Soliva-Fortuny, R. (2017b). Influence of cooking conditions on carotenoid content and stability in porridges prepared from high-carotenoid maize. Plant Foods for Human Nutrition, 72(2), 113–119.

Diepenbrock, C. H., Kandianis, C. B., Lipka, A. E., Magallanes-Lundback, M., Vaillancourt, B., Gongora-Castillo, E., Wallace, J. G., Cepela, J., Mesberg, A., Bradbury, P. J., Ilut, D. C., Mateos-Hernandez, M., Hamilton, J., Owens, B. F., Tiede, T., Buckler, E. S., Rocheford, T., Buell, C. R., Gore, M. A., & DellaPenna, D. (2017). Novel loci underlie natural variation in vitamin E levels in maize grain. Plant Cell, 29(10), 2374–2392.

Dube, N., Mashurabad, P. C., Hossain, F., Pullakhandam, R., Thinganing, L., & Bharatraj, D. K. (2018). β-Carotene bioaccessibility from biofortified maize (Zea mays) is related to its density and is negatively influenced by lutein and zeaxanthin. Food and Function, 9(1), 379–388.

Federico, M. L., & Schmidt, M. A. (2016). Modern breeding and biotechnological approaches to enhance carotenoid accumulation in seeds. Subcellular Bio chemistry, 79, 345–358.

Fu, Z., Chai, Y., Zhou, Y., Yang, X., Warburton, M. L., Xu, S., Cai, Y., Zhang, D., Li, J., & Yan, J. (2013). Natural variation in the sequence of PSY1 and fre quency of favourable polymorphisms among tropical and temperate maize germplasm. Theoretical and Applied Genetics, 126, 923–935.

Giuliano, G. (2014). Plant carotenoids: Genomics meets multi-gene engineering. Current Opinion in Plant Biology, 19, 111–117.

Giuliano, G. (2017). Provitamin A biofortification of crop plants: A gold rush with many miners. Current Opinion in Biotechnology, 44, 169–180.

Goswami, R., Zunjare, R. U., Khan, S., Baveja, A., Muthusamy, V., & Hossain, F. (2019). Marker-assisted introgression of rare allele of β-carotene hydroxylase (crtRB1) gene into elite quality protein maize inbred for combining high lysine, tryptophan and provitamin A in maize. Plant Breeding, in pruint.

Harjes, C. E., Rocheford, T. R., Bai, L., Brutnell, T. R., Kandianis, C. B., Sowin ski, S. G., Stapleton, A. E., Vallabhaneni, R., Williams, M., Wurtzel, E. T., Yan, J., & Buckler, E. S. (2008). Natural genetic variation in lycopene epsilon cyclase tapped to maize biofortification. Science, 319(5861), 330–333.

Hubskyi, Y. I. (2000). Biolohichna khimiia [Biological chemistry]. Ukrmedknyha, Kyiv – Ternopil (in Ukrainian).

Hwang, T., Ndolo, V. U., Katundu, M., Nyirenda, B., Bezner-Kerr, R., Arntfield, S., & Beta, T. (2016). Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of Central Malawi. Food Chemistry, 196, 1315–1324.

Kuhnen, S., Lemos, P. M., Campestrini, L. H., Ogliari, J. B., Dias, P. F., & Maraschin, M. (2011). Carotenoid and anthocyanin contents of grains of Brazilian maize landraces. Journal of the Science of Food and Agriculture, 91(9), 1548–1553.

Lebid, Y. M., Tsykov, V. S., Pashchenko, Y. M., Shevchenko, M. S., Kyrpa, M. Y., & Pashchenko, N. O. (2008). Metodyka provedennia polovykh dosli div z kukurudzoiu [Method of conducting field experiments with corn]. Institute of Grain Crops of NAAS of Ukraine, Dnipro (in Ukrainian).

Li, W., Zhai, S., Jin, H., Wen, W., Liu, J., Xia, X., & He, Z. (2016). Genetic variation of carotenoids in Chinese bread wheat cultivars and the effect of the 1BL.1RS translocation. Frontiers of Agricultural Science and Engineering, 3(2), 124–130.

Menshchikova, E. B., Lankin, V. Z., & Kandalintseva, N. V. ( 2012). Fenolnyye antioksidanty v biologii i meditsine [Phenolic antioxidants in biology and medicine]. Lap Lambert, Saarbrücken (in Russian).

Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Choudhary, M., Supradip, C., Bhat, J. S., Prasanna, B. M., & Gupta, H. S. (2014). Development of β-сarotene rich maize hybrids through marker-assisted introgression of β-carotene hyd roxylase allele. PLoS One, 9(12), e113583.

Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., & Gupta, H. S. (2015). Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment pro gramme. Cogent Food and Agriculture, 1, 1033141.

Muzhingi, T., Palacios-Rojas, N., Miranda, A., Cabrera, M. L., Yeum, K. J., & Tang, G. (2017). Genetic variation of carotenoids, vitamin E and phenolic compounds in provitamin A biofortified maize. Journal of the Science of Food and Agriculture, 97(3), 793–801.

Naqvi, S., Zhu, C., Farre, G., Ramessar, K., Bassie, L., Breitenbach, J., Conesa, D. P., Ros, G., Sandmann, G., Capell, T., & Christou, P. (2009). Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 7762–7767.

Nesmeyanov, A. N., & Nesmeyanov, N. A. (1974). Nachala organicheskoy khimii. Knyha 1 [The beginnings of organic chemistry. Book 1]. Chemistry, Moscow (in Russian).

Ortiz, D., Ponrajan, A., Bonnet, J. P., Rocheford, T., & Ferruzzi, M. G. (2018). Carotenoid stability during dry-milling, storage and extrusion processing of biofortified maize genotypes. Journal of Agricultural and Food Chemistry, 66(18), 4683–4691.

Ortiz, D., Rocheford, T., & Ferruzzi, M. G. (2016). Influence of temperature and humidity on the stability of carotenoids in biofortified maize (Zea mays L.) genotypes during controlled postharvest storage. Journal of Agricultural and Food Chemistry, 64(13), 2727–2736.

Owens, B. F., Lipka, A. E., Magallanes-Lundback, M., Tiede, T., Diepenbrock, C. H., Kandianis, C. B., Kim, E., Cepela, J., Mateos-Hernandez, M., Buell, C. R., Buck ler, E. S., DellaPenna, D., Gore, M. A., & Rocheford, T. (2014). A foundation for provitamin A biofortification of maize: Genome-wide association and geno mic prediction models of carotenoid levels. Genetics, 198(4), 1699–1716.

Radenovic, C., Delich, N., Sechansky, M., & Jovanovic, Z., Stankovic, G., & Popovich, A. (2015). Inbrednye linii i gibridy kukuruzy (Zea mays L.) serbskoj selekcii s vysokoj effektivnost’ju fotosinteza, obogashhennym pigmentnym sostavom i povyshennoj pitatel’noj cennost’ju [Maize (Zea mays L.) inbred lines and hybrids of Serbian selection with high efficiency of photosynthesis, rich in pigment content and increased nutritive value]. Agri cultural Biology, 50(5), 600–610 (in Russian).

Ramachandran, A., Pozniak, C. J., Clarke, J. M., & Singh, A. K. (2010). Carote noid accumulation during grain development in durum wheat. Journal of Cereal Science, 52(1), 30–38.

Rodriguez, G. A. (2001). Extraction, isolation, and purification of carotenoids. Current Protocols in Food Analytical Chemistry, 1, F2.1.1-F2.1.8.

Safawo, T. J., Senthil, N., Raveendran, M., Vellaikumar, S., Ganesan, K. N., Nalla thambi, G., Saranya, S., Shobhana, V. G., Abirami, B., & Gowri, V. (2010). Exploitation of natural variability in maize for β-carotene content using HPLC and gene specific markers. Electronic Journal of Plant Breeding, 1(4), 548–555.

Satarova, T. M., Borisova, V. V., Goncharov, Y. O., Zhouymei, Z., & Hui, J. (2017). Variiuvannia vmistu β-karotynu v zerni kukurudzy v protsesi yoho zberihannia [Variation of the content of β-carotene in maize grains in the process of its storage]. Grain Crops, 1(1), 40–44 (in Ukrainian).

Scott, K. J. (2001). Detection and measurement of carotenoids by UV/VIS spectro photometry. Current Protocols in Food Analytical Chemistry, 1, F2.2.1-F2.2.10.

Suwarno, W. B., Pixley, K. V., Palacios-Rojas, N., Kaeppler, S. M., & Babu, R. (2015). Genome-wide association analysis reveals new tagets for carotenoid biofortification in maize. Theoretical and Applied Genetics, 128(5), 851–864.

Tsikov, V. S., Konoplya, N. I., & Masliyev, V. (2013). Kukuruza na pishchevyye i lekarstvennyye tseli: Proizvodstvo i ispolzovaniye [Maize for food and medicinal purposes: production and using]. Shiko, Lugansk (in Russian).

Welham, S. J., Gezan, S. A., Clark, S. J., & Mead, A. (2014). Statistical methods in bio logy: Design and analysis of experiments and regression. CRC Press, Boca Raton.

Wong, J. C., Lambert, R. J., Wurtzel, E. T., & Rocheford, T. R. (2004). QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theoretical and Applied Genetics, 108(2), 349–359.

Xu, X., Wang, M., Li, L., Che, R., Li, P., Pei, L., & Li, H. (2017). Genome-wide trait-trait dynamics correlation study dissects the gene regulation pattern in maize kernels. BMC Plant Biology, 17(1), 163.

Yan, J., Kandianis, C. B., Harjes, C. E., Bai, L., Kim, E. H., Yang, X., Skinner, D. J., Fu, Z., Mitchell, S., Li, Q., Fernandez, M. G. S., Zaharieva, M., Babu, R., Fu, Y., Palacios, N., Li, J., DellaPenna, D., Brutnell, T., Buckler, E. S., Warburton, M. L., & Rocheford, T. (2010). Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nature Genetics, 42(4), 322–327.

Zhai, S. N., Xia, X. C., & He, Z. H. (2016). Carotenoids in staple cereals: metabo lism, regulation and genetic manipulation. Frontiers in Plant Science, 7, 1197.

Žilić, S., Serpen, A., Akillioğlu, Y., Gőkmen, V., & Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224–1231.

Zingg, J. M., & Azzi, A. (2004). Non-antioxidant activities of vitamin E. Current Medicinal Chemistry, 11(9), 1113–1133.

Zunjare, R. U., Chhabra, R., Hossain, F., Baveja, A., Muthusamy, V., & Gupta, H. S. (2018a). Molecular characterization of 5'UTR of the lycopene epsilon cyclase (IcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification. 3 Biotech, 8(1), 75.

Zunjare, R. U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H. S., Bhat, J. S., Thirunavukkarasu, N., Saha, S., & Gupta, H. S. (2018b). Development of bio fortified maize hybrids through marker-assisted stacking of β-carotene hydroxy lase, lycopene-E-cyclase and opaque 2 genes. Frontiers in Plant Science, 9, 178.

How to Cite
Satarova, T. M., Semenova, V. V., Zhang, J., Jin, H., Dzubetskii, B. V., & Cherchel, V. Y. (2019). Differentiation of maize breeding samples by β-carotene content . Regulatory Mechanisms in Biosystems, 10(1), 63-68. https://doi.org/10.15421/021910