Modern concept of biological identification of selenoproteins


Keywords: selenium; expression of selenoproteins; functions of selenoproteins; antioxidants; deficiency of selenoproteins

Abstract

Humans possess 25 selenoproteins, approximately half of which are enzymes (selenoenzymes) required for preventing, regulating, or reversing oxidative damage, while others participate in providing calcium metabolism, thyroid hormone maintenance, protein synthesis, cytoskeletal structure etc. This review examines the latest evidences of the biological effects of selenoproteins according to the method of complex analysis of the material. Selenoprotein P promotes insulin resistance in type 2 diabetes, mediates myocardial ischemic-reperfusion injuries and provides protection against disease by reducing chronic oxidative stress. Selenoprotein T is expressed at the endoplasmic reticulum membrane in all cells during development, but is confined to endocrine tissues in adulthood, controls homeostasis of glucose and prevents neurodegeneration by reducing oxidative stress factors. Expression of selenoprotein K is required for efficient Ca2+ flux into melanoma cancer cells, tumour growth and metastasic potential depend on SelK but it suppresses human choriocarcinoma cells. SelK also serves to maintain the normal physiological functions of skeletal muscle. Selenoprotein N deficiency, caused by mutations in the human gene, promotes myopathy characterized by muscle weakness, spinal rigidity, respiratory insufficiency. Sel N participates in normal physiology of skeletal and smooth muscle tissues. Selenoprotein M is located in the endoplasmic reticulum, characterized by high expression in the brain, antioxidative, neuroprotective activity and regulates intracellular Ca2+ levels. Also, the overexpression of SelM was detected in human hepatocellular carcinoma. Selenoprotein S is mentioned as a regulator of ER stress and inflammatory processes. Selenoprotein F controls cell proliferation by the impact on G1period of the cell cycle. Moreover, it is implicated in the pathogenesis of some types of cancer. The Sel F deficiency reduces the migration and invasive ability of the cells. Knockdown of selenoprotein W in rodents leads to increased release of Ca2+, causes oxidative ultramicroscopic injuries of the endoplasmic reticulum and mitochondria ultrastructure, which in turn increases the levels of inflammatory factors. Selenoprotein H is involved in redox regulation, in tumourogenesis. Knockdown of selenoprotein H decreases cellular differentiation and increases proliferation and migration of cells. Selenoproteins U, V, I, O, R are recently identified and their functions are not clearly known. The data analyzed in the review help determine promising directions in the study of the selenoproteins.

References

Addinsall, A. B., Wright, C. R., Andrikopoulos, S., van der Poel, C., & Stupka, N. (2018). Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. The Biochemical Journal, 475(6), 1037–1057.


Bang, J., Huh, J. H., Na, J. W., Lu, Q., Carlson, B. A., Tobe, R., Tsuji, P. A., Gladyshev, V. N., Hatfield, D. L., & Lee, B. J. (2015). Cell proliferation and motility are inhibited by G1 phase arrest in 15-kDa selenoprotein-deficient chang liver cells. Molecules and Cells, 38(5), 457–465.


Bang, J., Jang, M., Huh, J. H., Na, J. W., Shim, M., Carlson, B. A., Tobe, R., Tsuji, P. A., Gladyshev, V. N., Hatfield, D. L., & Lee, B. J. (2015). Deficiency of the 15-kDa selenoprotein led to cytoskeleton remodeling and non-apoptotic membrane blebbing through a RhoA/ROCK pathway. Biochemical and Biophysical Research Communications, 456(4), 884–890.


Bertz, M., Kühn, K., Koeberle, S. C., Müller, M. F., Hoelzer, D., Thies, K., Deubel, S., Thierbach, R., & Kipp, A. P. (2018). Selenoprotein H controls cell cycle progression and proliferation of human colorectal cancer cells. Free Radical Biology and Medicine, pii: S0891-5849(18)30020-0.


Bobba, A., Casalino, E., Petragallo, V. A., & Atlante, A. (2014). Thioredoxin/thioredoxin reductase system involvement in cerebellar granule cell apoptosis. Apoptosis, 19(10), 1497–1508.


Boukhzar, L., Hamieh, A., Cartier, D., Tanguy, Y., Alsharif, I., Castex, M., Arabo, A., El Hajji, S., Bonnet, J. J., Errami, M., Falluel-Morel, A., Chagraoui, A., Lihrmann, I., & Anouar, Y. (2016). Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of Parkinson's disease. Antioxidants and Redox Signaling, 24(11), 557–574.


Brigelius-Flohé, R. (2015). The evolving versatility of selenium in biology. Antioxidants and Redox Signaling, 23(10), 757–760.


Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., & Zhang, W. (2014). Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB Journal, 28(8), 3579–3588.


Chadani, H., Usui, S., Inoue, O., Kusayama, T., Takashima, S. I., Kato, T., Murai, H., Furusho, H., Nomura, A., Misu, H., Takamura, T., Kaneko, S., & Takamura, M. (2018). Endogenous selenoprotein P, a liver-derived secretory protein, mediates myocardial ischemia/reperfusion injury in mice. International Journal of Molecular Science, 19(3), e878.


Chen, P., Wang, R. R., Ma, X. J., Liu, Q., & Ni, J. Z. (2013). Different forms of selenoprotein M differentially affect Aβ aggregation and ROS generation. International Journal of Molecular Sciences, 14(3), 4385–4399.


Cox, A. G., Tsomides, A., Kim, A.J., Saunders, D., Hwang, K. L., Evason, K. J., Heidel, J., Brown, K. K., Yuan, M., Lien, E. C., Lee, B. C., Nissim, S., Dickinson, B., Chhangawala, S., Chang, C. J., Asara, J. M., Houvras, Y., Gladyshev,V. N., & Goessling, W. (2016). Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proceedings of the National Academy of Science of the United States of America, 113(38), e5562–e5571.


Cui, S., Men, L., Li, Y., Zhong, Y., Yu, S., Li, F., & Du, J. (2018). Selenoprotein S attenuates tumor necrosis factor-α-induced dysfunction in endothelial cells. Mediators of Inflammation, 2018, 1625414.


Dai, J., Liu, H., Zhou, J., & Huang, K. (2016). Selenoprotein R protects human lens epithelial cells against D-galactose-induced apoptosis by regulating oxidative stress and endoplasmic reticulum stress. International Journal of Molecular Sciences, 17(2), 231.


Du, X., Li, H., Wang, Z., Qiu, S., Liu, Q., & Ni, J. (2013). Selenoprotein P and selenoprotein M block Zn2+-mediated Aβ42 aggregation and toxicity. Metallomics, 5(7), 861–870.


Du, X., Qiu, S., Wang, Z., Wang, R., Wang, C., Tian, J., & Liu, Q. (2014). Direct interaction between selenoprotein P and tubulin. International Journal of Molecular Sciences, 15(6), 10199–10214.


Fan, R. F., Cao, C. Y., Chen, M. H., Shi, Q. X., & Xu, S. W. (2018). Gga-let-7f-3p promotes apoptosis in selenium deficiency-induced skeletal muscle by targeting selenoprotein K. Metallmics, 7, 869–1030.


Gan, F., Hu, Z., Zhou, Y., & Huang, K. (2017). Overexpression and low expression of selenoprotein S impact ochratoxin A-induced porcine cytotoxicity and apoptosis in vitro. Journal of Agricultural and Food Chemistry, 65(32), 6972–6981.


Gladyshev, V. N. (2014). Selenium and methionine sulfoxide reduction. Free Radical Biology and Medicine, 75(1), S8–S9.


Gladyshev, V. N., Arnér, E. S., Berry, M. J., Brigelius-Flohé, R., Bruford, E. A., Burk, R. F., Carlson, B. A., Castellano, S., Chavatte, L., Conrad, M., Copeland, P. R., Diamond, A. M., Driscoll, D. M., Ferreiro, A., Flohé, L., Green, F. R., Guigó, R., Handy, D. E., Hatfield, D. L., Hesketh, J., Hoffmann, P. R., Holmgren, A., Hondal, R. J., Howard, M. T., Huang, K., Kim, H. Y., Kim, I. Y., Köhrle, J., Krol, A., Kryukov, G. V., Lee, B. J., Lee, B. C., Lei, X. G., Liu, Q., Lescure, A., Lobanov, A. V., Loscalzo, J., Maiorino, M., Mariotti, M., Sandeep, P. K., Rayman, M. P., Rozovsky, S., Salinas, G., Schmidt, E. E., Schomburg, L., Schweizer, U., Simonović, M., Sunde, R. A., Tsuji, P. A., Tweedie, S., Ursini, F., Whanger, P. D., & Zhang, Y. (2016). Selenoprotein gene nomenclature. The Journal of Biological Chemistry, 291(46), 24036–24040.


Goo, J. S., Kim, Y. N., Choi, K. M., Hwang, I. S., Kim, J. E., Lee, Y. J., Kwak, M. H., Shim, S. B., Jee, S. W., Lim, C. J., Seong, J. K., & Hwang, D. Y. (2013). Proteomic analysis of kidneys from selenoprotein M transgenic rats in response to increased bioability of selenium. Clinical Proteomics, 10(1), 10.


Grosch, M., Fuchs, J., Bösl, M., Winterpacht, A., & Tagariello, A. (2013). Selenoprotein M is expressed during bone development. EXCLI Journal, 12, 967–979.


Guariniello, S., Colonna, G., Raucci, R., Costantini, M., Di Bernardo, G., Bergantino, F., Castello, G., & Costantini, S. (2014). Structure-function relationship and evolutionary history of the human selenoprotein M (SelM) found over-expressed in hepatocellular carcinoma. Biochimica et Biophysica Acta, 1844(2), 447–456.


Guerriero, E., Accardo, M., Capone, F., Colonna, G., Castello, G., & Costantini, S. (2014). Assessment of the Selenoprotein M (SELM) over-expression on human hepatocellular carcinoma tissues by immunohistochemistry. European Journal of Histochemistry, 58(4), 287–290.


Hamieh, A., Cartier, D., Abid, H., Calas, A., Burel, C., Bucharles, C., Jehan, C., Grumolato, L., Landry, M., Lerouge, P., Anouar, Y., & Lihrmann, I. (2017). Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Reports, 18(11), 1935–1946.


Hernandez, A., & Stohn, J. P. (2018). The type 3 deiodinase: Epigenetic control of brain thyroid hormone action and neurological function. International Journal of Molecular Sciences, 19(6), e1804.


Huang, J. Q., Ren, F. Z., Jiang, Y. Y., & Lei, X. (2016). Characterization of selenoprotein M and its response to selenium deficiency in chicken brain. Biological Trace Element Resesrch, 170(2), 449–458.


Ishikura, K., Misu, H., Kumazaki, M., Takayama, H., Matsuzawa-Nagata, N., Tajima, N., Chikamoto, K., Lan, F., Ando, H., Ota, T., Sakurai, M., Takeshita, Y., Kato, K., Fujimura, A., Miyamoto, K., Saito, Y., Kameo, S., Okamoto, Y., Takuwa, Y., Takahashi, K., Kidoya, H., Takakura, N., Kaneko, S., & Takamura, T. (2014). Selenoprotein P as a diabetes-associated hepatokine that impairs angiogenesis by inducing VEGF resistance in vascular endothelial cells. Diabetologia, 57(9), 1968–1976.


Kim, J. Y., Kim, Y., Kwak, G. H., Oh, S. Y., & Kim, H. Y. (2014). Over-expression of methionine sulfoxide reductase A in the endoplasmic reticulum increases resistance to oxidative and ER stresses. Acta Biochimica and Biophysica Sinica, 46(5), 415–419.


Kim, K. Y., Kwak, G. H., Singh, M. P., Gladyshev, V. N., & Kim, H. Y. (2017). Selenoprotein MsrB1 deficiency exacerbates acetaminophen-induced hepatotoxicity via increased oxidative damage. Archives of Biochemistry and Biophisics, 634, 69–75.


Kim, Y., Goo, J. S., Kim, I. Y., Kim, J. E., Kwak, M. H., Go, J., Shim, S., Hong, J. T., Hwang, D. Y., & Seong, J. K. (2014). Identification of the responsible proteins for increased selenium bioavailability in the brain of transgenic rats overexpressing selenoprotein M. International Journal of Molecular Medicine, 34(6), 1688–1698.


Kipp, A. P., Frombach, J., Deubel, S., & Brigelius-Flohé, R. (2013). Selenoprotein W as biomarker for the efficacy of selenium compounds to act as source for selenoprotein biosynthesis. Methods in Enzymology, 527, 87–112.


Kwak, G. H., & Kim, H. Y. (2017). MsrB3 deficiency induces cancer cell apoptosis through p53-independent and ER stress-dependent pathways. Archives of Biochemistry and Biophysics, 621, 1–5.


Lee, B. C., Lee, S. G., Choo, M. K., Kim, J. H., Lee, H. M., Kim, S., Fomenko, D. E., Kim, H. Y., Park, J. M., & Gladyshev, V. N. (2017). Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Scientific Reports, 7(1), 5119.


Lee, J. H., Kwon, J. H., Jeon, Y. H., Ko, K. Y., Lee, S. R., & Kim, I. Y. (2014). Pro178 and Pro183 of selenoprotein S are essential residues for interaction with p97(VCP) during endoplasmic reticulum-associated degradation. The Journal of Biological Chemistry, 289(20), 13758–13768.


Lee, J. H., Park, K. J., Jang, J. K., Jeon, Y. H., Ko, K. Y., Kwon, J. H., Lee, S. R., & Kim, I. Y. (2015). Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. The Journal of Biological Chemistry, 290(50), 29941–29952.


Li, M., Cheng, W., Nie, T., Lai, H., Hu, X., Luo, J., Li, F., & Li, H. (2018). Selenoprotein K mediates the proliferation, migration, and invasion of human choriocarcinoma cells by negatively regulating human chorionic gonadotropin expression via ERK, p38 MAPK, and akt signaling pathway. Biological trace element research, 184(1), 47–59.


Liu, J., Zhang, Z., & Rozovsky, S. (2014). Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential. FEBS Letters, 588(18), 3311–3321.


Liu, L. X., Zhou, X. Y., Li, C. S., Liu, L. Q., Huang, S. Y., & Zhou, S. N. (2013). Selenoprotein S expression in the rat brain following focal cerebral ischemia. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 34(9), 1671–1678.


Ma, Y. M., Guo, Y. Z., Ibeanu, G., Wang, L. Y., Dong, J. D., Wang, J., Jing, L., Zhang, J. Z., & Li, P. A. (2017). Overexpression of selenoprotein H prevents mitochondrial dynamic imbalance induced by glutamate exposure. International Journal of Biological Sciences, 13(11), 1458–1469.


Marciel, M. P., Khadka, V. S., Deng, Y., Kilicaslan, P., Pham, A., Bertino, P., Lee, K., Chen, S., Glibetic, N., Hoffmann, F. W., Matter, M. L., & Hoffmann, P. R. (2018). Selenoprotein K deficiency inhibits melanoma by reducing calcium flux required for tumor growth and metastasis. Oncotarget, 9(17), 13407–13422.


Misu, H., Takamura, T., Takayama, H., Hayashi, H., Matsuzawa-Nagata, N., Kurita, S., Ishikura, K., Ando, H., Takeshita, Y., Ota, T., Sakurai, M., Yamashita, T., Mizukoshi, E., Yamashita, T., Honda, M., Miyamoto, K., Kubota, T., Kubota, N., Kadowaki, T., Kim, H. J., Lee, I. K., Minokoshi, Y., Saito, Y., Takahashi, K., Yamada, Y., Takakura, N., & Kaneko, S. (2010). A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metabolism, 12(5), 483–495.


Misu, H., Takayama, H., Saito, Y., Mita, Y., Kikuchi, A., Ishii, K. A., Chikamoto, K., Kanamori, T., Tajima, N., Lan, F., Takeshita, Y., Honda, M., Tanaka, M., Kato, S., Matsuyama, N., Yoshioka, Y., Iwayama, K., Tokuyama, K., Akazawa, N., Maeda, S., Takekoshi, K., Matsugo, S., Noguchi, N., Kaneko, S., & Takamura, T. (2017). Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nature Medicine, 23(4), 508–516.


Mita, Y., Nakayama, K., Inari, S., Nishito, Y., Yoshioka, Y., Sakai, N., Sotani, K., Nagamura, T., Kuzuhara, Y., Inagaki, K., Iwasaki, M., Misu, H., Ikegawa, M., Takamura, T., Noguchi, N., & Saito, Y. (2017). Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nature Communications, 8(1), 1658.


Moghadaszadeh, B., Rider, B. E., Lawlor, M. W., Childers, M. K., Grange, R. W., Gupta, K., Boukedes, S. S., Owen, C. A., & Beggs, A. H. (2013). Selenoprotein N deficiency in mice is associated with abnormal lung development. FASEB Journal, 27(4), 1585–1599.


Na, J., Jung, J., Bang, J., Lu, Q., Carlson, B. A., Guo, X., Gladyshev, V. N., Kim, J., Hatfield, D. L., & Lee, B. J. (2018). Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radical Biology and Medicine, 127, 190–197.


Noh, M. R., Kim, K. Y., Han, S. J., Kim, J. I., Kim, H. Y., & Park, K. M. (2017). Methionine sulfoxide reductase A deficiency exacerbates cisplatin-induced nephrotoxicity via increased mitochondrial damage and renal cell death. Antioxidants and Redox Signaling, 27(11), 727–741.


Pietschmann, N., Rijntjes, E., Hoeg, A., Stoedter, M., Schweizer, U., Seemann, P., & Schomburg, L. (2014). Selenoprotein P is the essential selenium transporter for bones. Metallomics: Integrated Biometal Science, 6(5), 1043–1049.


Pitts, M. W., Byrns, C. N., Ogawa-Wong, A. N., Kremer, P., & Berry, M. J. (2014). Selenoproteins in nervous system development and function. Biological Trace Element Research, 161(3), 231–245.


Prevost, G., Arabo, A., Jian, L., Quelennec, E., Cartier, D., Hassan, S., Falluel-Morel, A., Tanguy, Y., Gargani, S., Lihrmann, I., Kerr-Conte, J., Lefebvre, H., Pattou, F., & Anouar, Y. (2013). The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance. Endocrinology, 154(10), 3796–3806.


Qiao, X., Tian, J., Chen, P., Wang, C., Ni, J., & Liu, Q. (2013). Galectin-1 is an interactive protein of selenoprotein M in the brain. International Journal of Molecular Sciences, 14(11), 22233–22245.


Rederstorff, M., Castets, P., Arbogast, S., Lainé, J., Vassilopoulos, S., Beuvin, M., Dubourg, O., Vignaud, A., Ferry, A., Krol, A., Allamand, V., Guicheney, P., Ferreiro, A., & Lescure, A. (2011). Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: A mammalian model for SEPN1-related myopathy. PLoS One, 6(8), 1–13.


Sattar, H., Yang, J., Zhao, X., Cai, J., Liu, Q., Ishfaq, M., Yang, Z., Chen, M., Zhang, Z., & Xu, S. (2018). Selenoprotein-U (SelU) knockdown triggers autophagy through PI3K-Akt-mTOR pathway inhibition in rooster Sertoli cells. Metallmics, 10(7), 929–940.


Short, S. P., & Williams, C. S. (2017). Selenoproteins in tumorogenesis and cancer progression. Advances in Cancer Research, 136, 49–83.


Singh, M. P., Kim, K. Y., & Kim, H. Y. (2017). Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen. Biochemical and Biophysical Research Communications, 484(1), 189–194.


Speckmann, B., Gerloff, K., Simms, L., Oancea, I., Shi, W., McGuckin, M. A., Radford-Smith, G., Khanna, K. K., Speckmann, B., Gerloff, K., Simms, L., Oancea, I., Shi, W., McGuckin, M. A., Radford-Smith, G., & Khanna, K. K. (2014). Selenoprotein S is a marker but not a regulator of endoplasmic reticulum stress in intestinal epithelial cells. Free Radical Biology and Medicine, 67, 265–277.


Tanguy, Y., Falluel-Morel, A., Arthaud, S., Boukhzar, L., Manecka, D. L., Chagraoui, A., Prevost, G., Elias, S., Dorval-Coiffec, I., Lesage, J., Vieau, D., Lihrmann, I., Jégou, B., & Anouar, Y. (2011). The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology, 152(11), 4322–4335.


Tian, J., Liu, J., Li, J., Zheng, J., Chen, L., Wang, Y., Liu, Q., & Ni, J. (2018). The interaction of selenoprotein F (SELENOF) with retinol dehydrogenase 11 (RDH11) implied a role of SELENOF in vitamin A metabolism. Nutrition and Metabolism, 15(7), 1–9.


Tobe, R., & Mihara, H. (2018). Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochimica and Biophysica Acta, 1, pii: S0304-4165(18)30155-7.


Varlamova, E. G., & Novoselov, V. I. (2012). Poisk partnjorov novogo selenovogo belka mlekopitajushhih (SELV) i jekspressiya ego mRNK v processe ontogeneza i spermatogeneza [The search of partners of a new mammalian selenium-containing protein V (SelV) and expression it's mRNA during ontogenesis and spermatogenesis]. Moleculiarnaia Biologiia, 46(2), 276–284 (in Russian).


Varlamova, E. G., Goltyaev, M. V., Novoselov, V. I., & Fesenko, E. E. (2017). Cloning, intracellular localization, and expression of the mammalian selenocysteine-containing protein SELENOI (SelI) in tumor cell lines. Doclady Biochemistry and Biophysics, 476(1), 320–322.


Varlamova, E. G., Novoselov, S. V., & Novoselov, V. I. (2015). Klonirovanie КDNK, jekspressiya i opredelenie substratnoj spetcifichnosti selenosoderzhashhego belka myshy SELV(SELENOPROTEIN V) [cDNA cloning, expression and determination of substrate specificity of mice selenocysteine-containing protein SelV (Selenoprotein V)]. Moleculiarnaia Biologiia, 49(5), 785–789 (in Russian).


Wang, C., Chen, P., He, X., Peng, Z., Chen, S., Zhang, R., Cheng, J., & Liu, Q. (2017). Direct interaction between selenoprotein R and Aβ42. Biochemical and Biophysical Research Communications, 489(4), 509–514.


Wright, C. R., Allsopp, G. L., Addinsall, A. B., McRae, N. L., Andrikopoulos, S., & Stupka, N. (2017). A reduction in selenoprotein S amplifies the inflamematory profile of fast-twitch skeletal muscle in the mdx dystrophic mouse. Mediators of Inflammation, 2017, 7043429.


Wrobel, J. K., Power, R., & Toborek, M. (2016). Biological activity of selenium: Revisited. IUBMB Life, 68(2), 97–105.


Wu, R. T., Cao, L., Chen, B. P., & Cheng, W. H. (2014). Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation. The Journal of Biological Chemistry, 289(49), 34378–34388.


Yan, J., Fei, Y., Han, Y., & Lu, S. (2016). Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Cell Biology International, 40(10), 1033–1040.


Yang, S. J., Hwang, S. Y., Choi, H. Y., Yoo, H. J., Seo, J. A., Kim, S. G., Kim, N. H., Baik, S. H., Choi, D. S., & Choi, K. M. (2011). Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: Implications for insulin resistance, inflammation, and atherosclerosis. The Journal of Clinical Endocrinology and Metabolism, 96(8), 1325–1329.


Yao, H., Fan, R., Zhao, X., Zhao, W., Liu,W., Yang, J., Sattar, H., Zhao, J., Zhang, Z., & Xu, S. (2016). Selenoprotein W redox-regulated Ca2+ channels correlate with selenium deficiency-induced muscles Ca2+ leak. Oncotarget, 7(36), 57618–57632.


Ye, Y., Bian, W., Fu, F., Hu, J., & Liu, H. (2018). Selenoprotein S inhibits inflammation-induced vascular smooth muscle cell calcification. Journal of Biological Inorganic Chemistry, 23(5), 739–751.


Yu, D., Zhang, Z. W., Yao, H. D., Li, S., & Xu, S. W. (2014). Antioxidative role of selenoprotein W in oxidant-induced chicken splenic lymphocyte death. Biometals, 27(2), 277–291.


Yu, D., Zhang, Z., Yao, H., Li, S., & Xu, S. W. (2015). The role of selenoprotein W in inflammatory injury in chicken immune tissues and cultured splenic lymphocyte. Biometals, 28(1), 75–87.


Zachara, B. A. (2015). Selenium and selenium-dependent antioxidants in chronic kidney disease. Advances in Clinical Chemistry, 68, 131–151.


Zhang, J. L., Zhang, Z. W., Shan, A. S., & Xu, S. W. (2014). Effects of dietary selenium deficiency or excess on gene expression of selenoprotein N in chicken muscle tissues. Biological Trace Element Research, 157(3), 234–241.


Zhou, J., Li, C., Gu, G., Wang, Q., & Guo, M. (2018). Selenoprotein N was required for the regulation of selenium on the uterine smooth muscle contraction in mice. Biological Trace Element Research, 183(1), 138–146.


Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. P. (2018). Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 7(5), 66.

Published
2018-10-19
How to Cite
Stanishevska, N. V. (2018). Modern concept of biological identification of selenoproteins. Regulatory Mechanisms in Biosystems, 9(4), 553-560. https://doi.org/https://doi.org/10.15421/021883