Cytogenetic activity of radionuclide contamination of water reservoirs of the alienation zone of Chornobyl NPP

Keywords: Triticum estivum L.; chromosome aberrations; mitosis disorders; mutagenic activity; genetic consequences


Thirty years after the accident, the alienation zone of Chornobyl NPP continues to be an open source of radionuclide spread which is carried with superficial and soil waters into river systems and moves beyond the area. The study of mutagenic activity of radionuclide contamination of the water reservoirs in the near zone of Chornobyl NNP will make it possible to predict genetic consequences of their effect in the years after the accident. The purpose of this research is to study frequency and spectrum of chromosome aberrations in root meristem cells of Triticum aestivum L. under the prolonged effect of radionuclide contamination of water and bottom deposits of the water reservoirs in the near alienation zone of Chornobyl NPP. Seeds of winter wheat varieties Al’batros odes’kyi and Zymoiarka were sprouted in the conditions of the effect of water radionuclide contamination of the Prypiat River, Brahinka River, a reservoir-cooler of ChNPP, Semyhodskyi backwater, drainage-way 3 of ChNPP, Lakes Hlyboke and Azbuchyn (total specific activity of 137Cs and 90Sr – 0.17–52.99 Bq/м3) and bottom deposits of the left and right banks of Prypiat canal, a reservoir-cooler of ChNPP, drainage-ways 1–3 of ChNPP (total specific activity of 137Cs and 90Sr – 16.0–45.0 Bq/kg). Frequency and spectrum of cytogenetic disorders were identified in the cells of root meristem sprouts with help of the ana-telophase method. Under the influence of radiation on water and bottom deposits of the water reservoirs in the alienation zone of ChNPP, a 1.6–4.2 times increase in the frequency of chromosome aberrations and mitosis disorders was found. The highest levels of cytogenetic activity were shown by water radionuclide contamination in a reservoir-cooler of ChNPP, Semyhodskyi backwater and bottom deposits of drainage-way 2. The correlation between frequency of chromosome aberrations and specific value of radionuclide activity of water reservoirs has not been recorded, which can prove the induction of cytogenetic disorders resulting from the radiation in the low-rate range. The spectrum of cytogenetic disorder types is mostly represented by acentric fragments, bridges and lagging chromosomes. The induction of the cells with lagging chromosomes, which exhibit the highest levels (0.24–0.38%), under the effect of radionuclide contamination of water in Hlyboke Lake, the Brahinka River, the Prypiat River, a reservoir-cooler of ChNPP and bottom deposits of drainage-way 3, allows one to assume the availability of aneugenic factors in the water reservoirs in the alienation zone of ChNPP. The water entities of the alienation zone of ChNPP, the level of radionuclide contamination of which is characterized by a high cytogenetic activity, induce cells with complex chromosome rearrangements of high frequency. Despite the decrease in chromosome aberration frequency effected by the water of the Prypiat River near Chornobyl city, the Brahinka River and bottom deposits of the right bank of Prypiat canal, the increased level of aneugenic cells and the induction of multiple chromosome rearrangements confirm the persistence of mutagenic activity in the abovementioned contaminated water entities.


Albertson, D. G. (2015). Molecular genetics methods in discovery of chromoso me structure. Chromosomal Translocations and Genome Rearrangements in Cancer, New York University College of Dentistry, New York, pp. 15–25.

Al-Dulaimi, D. W., Faisal, S. F., Baharetha, H. M., & Majid, A. M. S. A. (2017). Cytogenetic an experimental monitoring test for plant extracts. Journal of Pharmacy and Biological Sciences, 12(3), 100–105.

Artjuhov, V. G., & Kalaev, V. N. (2005). Citogeneticheskie pokazateli semenno go potomstva derev’ev duba chereshchatogo (Quercus robur L.), podverg shihsja vozdejstviju radioaktivnosti v rezul'tate avarii na Chernobyl'skoj AES i proizrastajushhih na territorijah s raznym urovnem antropogennogo zagrjaz nenija [Cytogenetic indicators of seed progeny of Quercus robur L. trees exposed to radioactivity as a result of the Chernobyl accident and growing in areas with different levels of anthropogenic pollution]. Radiation Biology. Radioecology, 45(5), 619–628 (in Russian).

Ashraf, M. A., Akib, S., Maah, M. J., Yusoff, I., & Balkhair, K. S. (2014). Cesium-137: Radio-chemistry, fate, and transport, remediation, and future concerns. Critical Reviews in Environmental Science and Technology, 44, 1740–1793.

Beresford, N. A., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J. T., & Voigt, G. (2016). Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77–89.

Bird, W. A., & Little, J. B. (2013). A tale of two forests: Addressing postnuclear radiation at Chernobyl and Fukushima. Environmental Health Perspectives, 121(3), 78–85.

Bondar, Y. I., Nenashev, R. A., Kalinichenko, S. A., Marchenko, Y. D., Dowdall, M., Standring, W., Brown, J. E., Pettersen, M., Skipperud, L., & Zabrotski, V. N. (2015). The distribution of 137Cs, 90Sr, and 241Am in waterbodies of different origins in the Belarusian part of Chernobyl exclusion zone. Water, Air, and Soil Pollution, 226(3), 1–13.

Bondarkov, M. D., Oskolkov, B. Y., Gaschak, S. P., Kireev, S. I., Maksimenko, A. M., Proskura, N. I., Jannik, G. T., & Farfán, E. B. (2011). Environmental radiation monitoring in the Chernobyl exclusion zone – history and results 25 years after. Health Physics, 101(4), 442–485.

Borrego-Soto, G., Ortiz-López, R., & Rojas-Martínez, A. (2015). Ionizing radiate on-induced DNA injury and damage detection in patients with breast cancer. Genetics and Molecular Biology, 38(4), 420–432.

Boubriak, I., Akimkina, T., Polischuk, V., Dmitriev, A., McCready, S., & Grod zinsky, D. (2016). Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors. Cytology and Genetics, 50(6), 381–399.

Busby, C. (2017). Radiochemical genotoxicity risk and absorbed dose. Research and Reports on Toxicology, 1(1), 1–13.

Compton, D. A. (2011). Mechanisms of Aneuploidy. Current Opinion in Cell Biology, 23(1), 109–113.

Duesberg P., Li, R., & Rasnick, D. (2000). Aneuploidy precedes and segregates with chemical carcinogenesis. Cancer Genetics and Cytogenetics, 119, 83–93.

Durante, M., Furusawa, Y., & George, K. (1998). Rejoining and misrejoining of radiation-induced chromatin breaks. Radiation Research, 149, 446–454.

Elhajouji, A., Lukamowicz, M., Cammerer, Z., & Kirsch-Volders, M. (2011). Po tential thresholds for genotoxic effects by micronucleus scoring. Mutagene sis, 26(1), 199–204.

Evangeliou, N., Balkanski, Y., Cozic, A., Hao, W. M., Mouillot, F., Thonicke, K., Paugam, R., Zibtsev, S., Mousseau, T. A., Wang, R., Poulter, B., Petkov, A., Yue, C., Cadule, P., Koffi, B., Kaiser, J. W., & Møller, A. P. (2015). Fire evolution in the radioactive forests of Ukraine and Belarus: Future risks for the population and the environment. Ecological Monographs, 85(1), 49–72.

Evangeliou, N., Hamburger, T., Talerko, N., Zibtsev, S., Bondar, Y., Stohl, A., Balkanski, Y., Mousseau, T. A., & Møller, A. P. (2016). Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and de position measurements over Europe. Environmental Pollution, 216, 408–418.

Firbas, P., & Amon, T. (2014). Chromosome damage studies in the onion plant Allium cepa L. International Journal of Cytology, Cytosystematics and Cytogenetics, 67(1), 25–35.

Fuller, N., Ford, A. T., Nagorskaya, L. L., Gudkov, D. I., & Smith, J. T. (2018). Reproduction in the freshwater crustacean Asellusa quaticus along a gradient of radionuclide contamination at Chernobyl. Science of the Total Environment, 628–629, 11–17.

Fuller, N., Lerebours, A., Smith, J. T., & Ford, A. T. (2015). The biological effects of ionising radiation on Crustaceans: A review. Aquatic Toxicology, 167, 55–67.

Garnier-Laplace, J., Beaugelin-Seiller, K., Della-Vedova, C., Métivier, J.-M., Ritz, C., Mousseau, T. A., & Møller, A. P. (2015). Radiological dose reconstructti on for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships. Scientific Reports, 5, 1–13.

Geras’kin, S. A., & Volkova, P. Y. (2014) Genetic diversity in Scots pine popula tions along a radiation exposure gradient. Science of the Total Environment, 496, 317–327.

Geras’kin, S. A., Oudalova, A. A., Kim, J. K., Dikarev, V. G., & Dikareva, N. S. (2007). Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: Non-linear dose-effect relationship. Radiation and Environmental Biophysics, 46(1), 31–41.

Geras’kin, S., Oudalova, A. A., Docareva, N. S., Spiridonov, S., Hinton, T., Cher nonog, E., & Garnier-Laplace, J. (2011). Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident. Ecotoxi cology, 20, 1195–1208.

Gudkov, D. I., Kuzmenko, M. I., Kireev, S. I., Nazarov, A. B., Shevtsova, N. L., Dziubenko, E. V., & Kaglian, A. E. (2010). Radioecological problems of aqua tic ecosystems of the Chernobyl exclusion zone. Biophysics, 55(2), 332–339.

Gudkov, D. I., Shevtsova, N. L., Pomortseva, N. A., Dzyubenko, E. V., Kaglyan, A. E., & Nazarov, A. B. (2016a). Radiation-induced cytogenetic and hemato logic effects on aquatic biota within the Chernobyl exclusion zone. Journal of Environmental Radioactivity, 151(2), 438–448.

Gudkov, D., Dzyubenko, E., Shevtsova, N. M., & Nazarov, A. (2011). Aquatic biota within the Chernobyl accident exclusion zone: Consequences of the long-term radiation exposure. Radiobiology and Environmental Security, 116, 233–244.

Gudkov, D., Dzyubenko, Y. V., Nazarov, A. B., & Klenus, V. G. (2016). Fresh water mollusks in the exclusion zone of the Chernobyl NPS: Dynamics of radionuclide content, dose loads, and cytogenetic and hematological investi gations. Hydrobiological Journal, 46(5), 74–90.

Guogytė, K., Plieskienė, A., Ladygienė, R., Vaisiūnas, Ž., Sevriukova, O., Janušo nis, V., & Žiliukas, J. (2017). Assessment of correlation between chromosomal radiosensitivity of peripheral blood lymphocytes after in vitro irradiation and normal tissue side effects for cancer patients undergoing radiotherapy. Geno me Integrity, 8(1).

Hristova, R., Hadjidekova, V., Grigorova, M., Nikolova, T., Bulanova, M., Popo va, L., Staynova, A., & Benova, D. (2013). Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay. Journal of Radiation Research, 54(5), 832–839.

Itoh, M., Kajihara, R., Kato, Y., Takano-Shimizu, T., & Inoue, Y. (2018). Frequ encies of chromosomal inversions in Drosophila melanogaster in Fukushi ma after the nuclear power plant accident. PLoS One, 13(2), 0192096.

Janion, C. (2008). Inducible SOS response system of DNA repair and mutage nesis in Escherichia coli. International Journal of Biological Sciences, 4(6), 338–344.

Konoplev, A., Golosov, V., Laptev, G., Nanba, K., Onda, Y., Takase, T., Wakiya ma, Y., & Yoshimura, K. (2016). Behavior of accidentally released radioce sium in soil-water environment: Looking at Fukushima from a Chernobyl perspective. Journal of Environmental Radioactivity, 151, 568–578.

Kosakovskaja, I. V., & Gudkova, N. V. (2005). Vlijanie gamma-radiacii i vysokoj temperatury na sostav kislotorastvorimyh jadernih belkov prorostkov ozimoj pshenicy [Effect of gamma radiation and high temperature on the composi tion of acid-soluble nuclear proteins of winter wheat seedlings]. Physiology and Biochemistry of Cultivated plants, 37(1), 24–29 (in Russian).

Kovaleva, V. I., & Bagatskaia, N. V. (2013). Cytogenetic effects in peripheral blood lymphocytes in the offspring of Chernobyl nuclear power plant acci dent liquidators under the influence of mitomycin C in vitro and folic acid in vivo. Cytology and Genetics, 47(1), 68–73.

Lisowska, H., Brehwens, K., Zölzer, F., Wegierek-Ciuk, A., Czub, J., & Lankoff, A. (2014). Effect of hypothermia on radiation-induced micronuclei and delay of cell cycle progression in TK6 cells. International Journal of Radiation Biology, 90(4), 318–324.

Magin, S., Papaioannou, M., Saha, J., Staudt, C., & Iliakis, G. (2015). Inhibition of homologous recombination and promotion of mutagenic repair of DNA double-strand breaks underpins arabinoside-nucleoside analogue radiosensiti zation. Cancer Biology and Signal Transduction, (3), 1424–1433.

Marković, S. Z., Nikolić, L. I., Hamidović, J. L., Grubor, M. G., Grubor, M. M., & Kastratović, D. A. (2017). Chromosomes aberations and enviromental fac tors. Hospital Pharmacology, 4(1), 486–490.

McMahon, S. J., Schuemann, J., Paganetti, H., & Prise, K. M. (2016). Mechanistic modelling of DNA repair and cellular survival following radiation-induced DNA damage. Scientific Reports, 7, 1–14.

Medvedeva, M. Y., Bolsunovsky, A. Y., & Zotina, T. A. (2014). Cytogenetic ab normalities in aquatic plant Elodea canadensis in anthropogenic contamina tion zone of Yenisei River. Contemporary Problems of Ecology, 7(4), 422–432.

Mousseau, T. A., & Møller, A. P. (2014). Genetic and ecological studies of ani mals in Chernobyl and Fukushima. Journal of Heredity, 105(5), 704–709.

Muratova, E. N., Goryachkina, O. V., Kornilova, M. G., Pimenov, A. V., Sedelni kova, T. S., & Bolsunovsky, A. Y. (2014). Cytogenetic studies on submerged plants from the Yenisei river area in the zone of radioactive contamination. Biology Bulletin, 41(5), 461–467.

Nakamura, N. (2018). Why genetic effects of radiation are observed in mice but not in humans. Radiation Research, 189, 117–127.

Nurmansyah, Y., Alghamdi, S. S., Migdadi, H. M., & Farooq, M. (2018). Mor phological and chromosomal abnormalities in gamma radiation-induced mu tagenized faba bean genotypes. International Journal of Radiation Biology, 94(2), 174–185.

Obe, G., Pfeiffer, P., Savage, J. R. K., Johannes, C., Goedecke, W., Jeppesen, P., Natarajan, A. T., Martinez-López, W., Folle, G. A., & Drets, M. E. (2002). Chromosomal aberrations: Formation, identification and distribution. Muta tion Research, 504, 17–36.

Osman, A. G. M. (2014). Genotoxicity tests and their contributions in aquatic environmental research. Journal of Environmental Protection, 5, 1391–1399.

Pampalona, J., Roscioli, E., Silkworth, W. T., Bowden, B., Genescà, A., Tusell, L., & Cimini, D. (2016). Chromosome bridges maintain kinetochore-microtubule attachment throughout mitosis and rarely break during anaphase. PLoS One, 11(1), 0147420.

Parshad, R., & Sanford, K. K. (2001). Radiation-induced chromatid breaks and deficient DNA repair in cancer predisposition. Hematology, 37, 87–96.

Passerini, V., Ozeri-Galai, E., de Pagter, M. S., Donnelly, N., Schmalbrock, S., Kloosterman, W. P., Kerem, B., & Storchova, Z. (2016). The presence of extra chromosomes leads to genomic instability. Nature Communications, 7, 10754.

Pausheva, Z. P. (1988). Praktikum po citologii rastenij [Workshop on plant cyto logy]. Agropromizdat, Moscow (in Russian).

Pohrebennyk, V., Politylo, R., Yakovleva, V., & Salamon, I. (2016). Radioecolo gical monitoring of groundwater resources in the Chernobyl exclusion zone. Journal of Acta Facultatis Studiorum Humanitatis et Naturae Universitatis Prešoviensis, 43, 136–142.

Pojoga (Usurelu), M. D., Manaila, E., Nicoleta, C., Duta, C. G., Cimponeriu, D., & Simon-Gruita A. (2013). Chromosome aberrations, telomere and telome rase dysfunction after beta irradiation in human lymphocytes. Romanian Biotechnological Letters, 18(5), 8603–8612.

Qian, Q. Z., Cao, X. K., Shen, F. H., & Wang, Q. (2016). Effects of ionising radia tion on micronucleus formation and chromosomal aberrations in Chinese radiation workers. Radiation Protection Dosimetry, 168(2), 197–203.

Qureshi, S. T., Memon, S. A., Abassi, A. R., Sial, M. A., & Bughio, F. A. (2017). Radiofrequency radiations induced genotoxic and carcinogenic effects on chickpea (Cicer arietinum L.) root tip cells. Saudi Journal of Biological Sciences, 24(4), 883–891.

Ramzaev, V., Bøtter-Jensen, L., & Thomsen, K. J. (2008). An assessment of cu mulative external doses from Chernobyl fallout for a forested area in Russia using the optically stimulated luminescence from quartz inclusions in bricks. Journal of Environmental Radioactivity, 99(7), 1154–1164.

Romanenko, V., Gudkov, D., & Kuz'menko, M. (2014). Gidrobionty vodojm Chornobyl's'koi' zony [Hydrobionts of reservoirs of the Chernobyl zone]. Svіtogljad, 46(2), 37–46 (in Ukrainian).

Rudenko, L. I., Han, V. E., Odincov, A. A., & Dzhuzha, O. V. (2013). Fazovoe raspredelenie, formy nahozhdenija i dolja mikrochastic v gruntovoj vode po 137Cs, 90Sr, uranu i transuranovym jelementam [The phase distribution, the forms of occurrence and the fraction of microparticles in groundwater over 137Cs, 90Sr, uranium and transuranium elements]. Reports of the National Academy of Sciences of Ukraine, 7, 165–171 (in Russian).

Sazykina, T. G., & Kryshev, A. I. (2003). EPIC database on the effects of chronic radiation in fish. Journal of Environmental Radioactivity, 68, 65–87.

Shevchenko, V. V., Grinih, L. I., & Abramov, V. I. (1998). Citogeneticheskie ef fekty v prirodnyh populjacijah Crepis tectorum L., proizrastajushhih v rajone Vostochno-Ural'skogo radioaktivnogo sleda [Cytogenetic effects in natural populations of Crepis tectorum L., growing in the area of the East Urals ra dioactive trace]. Radiation Biology. Radioecology, 38(3), 330–336 (in Russian).

Shkarupa, V. M., Neumerzhic'ka, L. V., Klimenko, S. V., & Simіglazova, T. V. (2011). Dynamika zmin spektra aberacij hromosom, indukovanyh mitomicynom C u Allium cepa L. [Dynamics of changes in spectrum of aberrations of chromosomes induced by mitomycin C in Allium cepa L.]. Bulletin of the Ukrainian Society of Genetics and Breeders, 9(1), 112–117.

Shmakova, N. L., Fadeeva, T. A., & Nasonova, E. A. (2002). Citogeneticheskie jeffekty malyh doz obluchenija v kletkah mlekopitajushhih: Analiz fenomena giperchuvstvitel'nosti i inducirovannoj rezistentnosti [Cytogenetic effects of small doses of irradiation in mammalian cells: An analysis of the phenome non of hypersensitivity and induced resistance]. Radiation Biology, Radio ecology, 42(3), 245–250 (in Russian).

Shuryak, I. (2017). Quantitative modeling of responses to chronic ionizing radia tion exposure using targeted and non-targeted effects. PLoS One, 12(4), 0176476.

Suga, H., Fan, Q., Takeichi, Y., Tanaka, K., Kondo, H., Kanivets, V. V., Sakagu chi, A., Kato, K., Inami, N., Mase, K., Ono, K., & Takahashi, Y. (2014). Characterization of particulate matters in the Pripyat River in Chernobyl related to their adsorption of radiocesium with inhibition effect by natural organic matter. Chemistry Letters, 43(7), 1128–1130.

Talerko, N. N., Garger, Е. К., & Kuz'menko, А. G. (2013). Prognoznaja ocenka transgranichnogo perenosa radionuklidov vsledstvie prohozhdenija smercha nad vodoemom-ohladitelem ChAJeS [Predictive assessment of cross-border transport of radionuclides due to the passage of the tornado cooling pond Chernobyl]. Problems of Safety of Nuclear Power Plants and Chernobyl, 20, 85–93 (in Ukrainian).

Tawn, E. J., Curwen, G. B., Jonas, P., Gillies, M., Hodgson, L., & Cadwell, K. K. (2015). Chromosome aberrations determined by FISH in radiation workers from the Sellafield nuclear facility. Radiation Research, 184(3), 296–303.

Tawn, E. J., Curwen, G. B., Riddell, A. E., Lioyd, D. C., & Ainsbury, E. A. (2017). Chromosome analysis in a case of a plutonium contaminated wound. Journal of Radiological Protection, 37(2), 13–18.

Topashka-Ancheva, M., & Gerasimova, T. (2012) Genomic sensitivity of small Mammals – a suitable test system in the genetic monitoring. In: Begum, G. (ed.). Ecotoxicology. InTech, Rijeka. Pp. 125–146.

Zotina, T. A., Trofimova, E. A., Medvedeva, M. Y., Dementyev, D. V., & Bolsu novsky, A. Y. (2015). Use of the aquatic plant Elodea canadensis to assess toxicity and genotoxicity of Yenisei river sediments. Environmental Toxico logy and Chemistry, 34(10), 2310–2321.

How to Cite
Yakymchuk, R. A. (2018). Cytogenetic activity of radionuclide contamination of water reservoirs of the alienation zone of Chornobyl NPP. Regulatory Mechanisms in Biosystems, 9(2), 189-197.