Modeling the invasiveness of Ulmus pumila in urban ecosystems in conditions of climate change

  • Y. Lykholat Oles Honchar Dnipro National University
  • N. Khromykh Oles Honchar Dnipro National University
  • O. Didur Oles Honchar Dnipro National University
  • A. Alexeyeva Oles Honchar Dnipro National University
  • T. Lykholat Oles Honchar Dnipro National University
  • V. Davydov Oles Honchar Dnipro National University
Keywords: Asiatic elm; invasiveness; modeling; local population; climatic change


Climatic change can influence the boundaries of the natural and alien plant species distribution. Fluctuations in air temperature, relative humidity and other factors can become a stimulus to initiation and / or intensification of the invasive nature of some adventive plant species, especially in areas with a high degree of anthropogenic transformation. This paper presents an analysis of the current state and a forecast of the invasiveness of the alien species Ulmus pumila L. (Asiatic elm) in the Northern Steppe Dnieper under conditions of climatic change. Two local U. pumila populations consisting of young different age trees were found during a route survey in the territory of the large industrial city Dnipro (48°28′00″ N, 35°01′05″ E) in its left-bank and right-bank parts.The seed origin of both local populations of Asiatic elm is confirmed by the fact that the young plants were spaced at a distance of 50 to 120 m from adult trees, which could potentially be parent plants. Both the left-bank and right-bank populations of U. pumila were located on abandoned construction sites, where there were numerous reinforced concrete slabs, piles and abundant construction debris. In both U. pumila local populations, 100 different-aged trees were randomly selected throughout the site, and their age and the morphometric parameters were measured to simulate the development process of the detected populations, provided the current trends of climate change continue. Analytical dependence of the number of trees in the left-bank local U. pumila population on development time was described by a polynomial model with a determination coefficient of 98.3%. The graphic representation of this model had a sinusoidal character, and a similar dynamic of left-bank population growth in the subsequent years was suggested. The dynamic of the number of trees in the right-bank local Asiatic elm population was described by an exponential model with a determination coefficient of 84.4%, and its graphical representation was exponential. According to the forecast, by 2020, the number of plants in the right-bank local population of U. pumila can increase 4-fold in comparison with 2015 while maintaining the current dynamic of population development. Thus, the created mathematical models adequately described the dynamics of development of both local populations during the last 15 years and predicted their subsequent intensive growth, confirming the initiation and intensification of the invasive nature of the alien species U. pumila by climatic change in the Steppe Dnieper.


Abramova, L. M. (2012). Expansion of invasive alien plant species in the republic of Bashkortostan, the Southern Urals: Analysis of causes and ecological consequences. Russian Journal of Ecology, 43(5), 352–357.

Bahuguna, R. N., & Jagadish, K. S. V. (2015). Temperature regulation of plant phe nological development. Environmental and Experimental Botany, 111, 83–90.

Baranova, O. G., & Bralgina (Zyankina), Е. N. (2015). Invazionnye vidy rastenij v tryoh gorodah Udmurtskoj Respubliki [Invasive plant species in three cities of Udmurt Republic]. Russian Journal of Biological Invasions, 4, 14–20 (in Russian).

Blackburn, T. M., Essl, F., Evans, T., Hulme, P. E., Jeschke, J. M., Kühn, I., Kumschick, S., Marková, Z., Mrugała, A., Nentwig, W., Pergl, J., Pyšek, P., Rabitsch, W., & Bacher, S. (2014). A unified classification of alien species based on the magnitude of their environmental impacts. PloS Biology, 12(5), e1001850.

Borisova, E. A. (2016). Woody plant invasions into the Upper Volga natural com munities. Russian Journal of Biological Invasions, 1, 24–30 (in Russian).

Burda, R. I. (2014). Evropeyskaya politika botanicheskih sadov po invazivnyim chuzherodnyim vidam [European policy of botanical gardens on invasive alien species]. Industrial Botany, 14, 3–14 (in Russian).

Chytrý, M., Pyšek, P., Wild, J., Pino, J., Maskell, L. C., & Vilà, M. (2009). Euro pean map of alien plant invasions based on the quantitative assessment across habitats. Diversity and Distributions, 15(1), 98–107.

Copeland, L. O., & McDonald, M. F. (2012). Principles of seed science and tech nology. Springer Science and Business Media.

de Lange, W. J., & van Wilgen, B. W. (2010). An economic assessment of the contribution of biological control to the management of invasive alien plants and to the protection of ecosystem services in South Africa. Biological Invasions, 12(12), 4113–4124.

Dumalisile, L., & Somers, M. J. (2017). The effects of an invasive alien plant (Chromolaena odorata) on large African mammals. Nature Conservation Research: Zapovednaâ Nauka, 2(4), 102–108.

Fateryga, V. V., & Bagrikova, N. A. (2017). Invasion of Opuntia humifusa and O. phaeacantha (Cactaceae) into plant communities of the Karadag Nature Reserve. Nature Conservation Research: Zapovednaâ Nauka, 2(4), 26–39.

Foxcroft, L. C., Pyšek, P., Richardson, D. M., Genovesi, P., & MacFadyen, S. (2017). Plant invasion science in protected areas: Progress and priorities. Biological Invasions, 19(5), 1353–1378.

Fuentes, N., Saldaña, A., Kühn, I., & Klotz, S. (2015). Climatic and socioeco nomic factors determine the level of invasion by alien plants in Chile. Plant Ecology and Diversity, 8(3), 371–377.

Gaertner, M., Wilson, J. R. U., Cadotte, M. W., Maclvor, J. S., Zenni, R. D., & Ri chardson, D. M. (2017). Non-native species in urban environments: Patterns, processes, impacts and challenges. Biological Invasions, 19(12), 3461–3469.

Guzzetti, L., Galimberti, A., Bruni, I., Magoni, C., Ferri, M., Tassoni, A., Sangio vanni, E., Agli, M. D., & Labra, M. (2017). Bioprospecting on invasive plant species to prevent seed dispersal. Scientific Reports, 7, 13799.

Hanspach, J., Kühn, I., Pompe, S., & Klotz, S. (2010). Predictive performance of plant species distribution models depends on species traits. Perspectives in Plant Ecology, Evolution and Systematics, 12(3), 219–225.

Hou, Q. Q., Chen, B. M., Peng, S.-L., & Chen, L.-Y. (2014). Effects of extreme temperature on seedling establishment of nonnative invasive plants. Biological Invasions, 16(10), 2049–2061.

Kowarik, I., & Pyšek, P. (2012). The first steps towards unifying concepts in invasion ecology were made one hundred years ago: Revisiting the work of the Swiss botanist Albert Thellung. Diversity and Distributions, 18(12), 1243–1252.

Küster, E. C., Bierman, S. M., Klotz, S., & Kühn, I. (2011). Modelling the impact of climate and land use change on the geographical distribution of leaf anatomy in a temperate flora. Ecography, 34(3), 507–518.

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M.-J., Lasch, P., Eggers, J., der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B., & Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69–83.

Lockwood, J. L., Hoopes, M. F., & Marchetti, M. P. (2007). Invasion Ecology. Blackwell Publishing, Malden (Massachusetts).

Lykholat, T., Lykholat, O., & Antonyuk, S. (2016). Immunohistochemical and biochemical analysis of mammary gland tumours of different age patients. Cytology and Genetic, 50(1), 32–41.

Lykholat, Y. V., Khromykh, N. A., Ivan’ko, I. A., Matyukha, V. L., Kravets, S. S., Didur, O. O., Alexeyeva, A. A., & Shupranova, L. V. (2017). Otsinka i proh noz invaziinosti deiakykh adventyvnykh roslyn za vplyvu klimatychnykh zmin u Stepovomu Prydniprovi [Assessment and prediction of the invasive ness of some alien plants in conditions of climate change in the steppe Dnieper region]. Biosystems Diversity, 25(1), 52–59.

Lykholat, Y. V., Khromykh, N., Ivanko, I., Kovalenko, I., Shupranova, L., & Kha rytonov, M. (2016a). Metabolic responses of steppe forest trees to altitude-as sociated local environmental changes. Agriculture and Forestry, 62(2), 163–171.

Lykholat, Y., Alekseeva, A., Khromykh, N., Ivan’ko, I., Kharytonov, M., & Ko valenko, I. (2016b). Assessment and prediction of viability and metabolic activity of Tilia platyphyllos in arid steppe climate of Ukraine. Agriculture and Forestry, 62(3), 55–64.

Marbuah, G., Gren, I.-M., & McKie, B. (2014). Economics of harmful invasive species: A review. Diversity, 6(3), 500–523.

Maslyakov, V. Y., & Izhevsky, S. S. (2011). Invazii rastitelnoyadnyh nasekomyh v evropeyskoj chasti Rossii [Alien phytophagous insects invasions in the European Part of Russia]. IGRAS, Moscow (in Russian).

Mech, A. M., Tobin, P. C., Teskey, R. O., Rhea, J. R., & Gandhi, K. J. K. (2018). Increases in summer temperatures decrease the survival of an invasive forest insect. Biological Invasions, 20(2), 365–374.

Nazarenko, M., Lykholat, Y., Grigoryuk, I., & Khromykh, N. (2018). Optimal do ses and concentrations of mutagens for winter wheat breeding purposes. Part I. Grain productivity. Journal of Central European Agriculture, 19(1), 194–205.

Olson, L. J. (2006). The economics of terrestrial invasive species: A review of the literature. Agricultural and Resource Economics Review, 35(1), 178–194.

Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52(3), 273–288.

Pismarkina, E. V., & Silaeva, T. B. (2018). Osobennosti naturalizatsii chuzherodnyh rastenij na severo-zapade Privolzhskoj vozvyshennosti [Features of naturali zation of alien plants in the North-West of Privolzhskaya Uplands]. Journal of Biological Invasions, 1, 88–102 (in Russian).

Pratt, C. F., Constantine, K. L., & Murphy, S. T. (2017). Economic impacts of in vasive alien species on African smallholder livelihoods. Global Food Secu rity, 14, 31–37.

Prieto, P., Penuelas, J., Niinemets, Ü., Ogaya, R., Schmidt, I. K., Beier, C., Tietema, A., Sowerby, A., Emmett, B. A., Láng, E. K., Kröel-Dulay, G., Lhotsky, B., Cesaraccio, C., Pellizzaro, G., De Dato, G., Sirca, C., & Estiarte M. (2009). Changes in the onset of spring growth in shrubland species in response to experimental warming along a north-south gradient tin Europe. Global Ecology and Biogeography, 18(4), 473–484.

Pyšek, P., & Richardson, D. M. (2006). The biogeography of naturalization in alien plants. Journal of Biogeography, 33(12), 2040–2050.

Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18(5), 1725–1737.

Richardson, D. M., & Rejmánek, M. (2011). Trees and shrubs as invasive alien species – a global review. Diversity and Distributions, 17(5), 788–809.

Rouget, M., Robertson, M. P., Wilson, J. R. U., Hui, C., Essl, F., Renteria, J. L., & Richardson, D. M. (2016). Invasion debt – quantifying future biological invasions. Diversity and Distributions, 22(4), 445–456.

Sperlich, D., Chang, C. T., Peñuelas, J., Gracia, C., & Sabaté, S. (2015). Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiology, 35(5), 501–520.

Trentanovi, G., von der Lippe, M., Sitzia, T., Ziechmann, U., Kowarik, I., & Cierjacks, A. (2013). Biotic homogenization at the community scale: Disen tangling the roles of urbanization and plant invasion. Diversity and Distri butions, 19(7), 738–748.

van Wilgen, B., Richardson, D., Le Maitre, D., Marais, C., & Magadlela, D. (2001). Environment, development and sustainability, 3(2), 145–168.

Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J., Schaffner, U., Sun, Y., & Pyšek, P. (2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7), 702–708.

Wagner, V., Chytrý, M., Jiménez-Alfaro, B., Pergl, J., Hennekens, S., Biurrun, I., Knollová, I., Berg, C., Vassilev, K., Rodwell, J. S., Škvorc, Ž., Jandt, U., Ewald, J., Jansen, F., Tsiripidis, I., Botta-Dukát, Z., Casella, L., Attorre, F., Rašomavičius, V., Ćušterevska, R., Schaminée, J. H. J., Brunet, J., Lenoir, J., Svenning, J.-C., Kącki, Z., Petrášová-Šibíková, M., Šilc, U., García-Mijan gos, I., Campos, J. A., Fernández-González, F., Wohlgemuth, T., Ony shchenko, V., & Pyšek, P. (2017). Alien plant invasions in European wood lands. Diversity and Distributions, 23(9), 969–981.

Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kuhn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarosík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nent wig, W., Ott, J., Panov, V. E., Reineking, B., Robinet, C., Semenchenko, V., Solarz, W., Thuiller, W., Vilà, M., Vohland, K., & Settele, J. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology and Evolution, 24(12), 686–693.

Zamin, N. T., Machado do Amaral, S., Filho, A. F., & Koehler, H. S. (2013). Effect of climate variables on monthly growth in modeling biological yield of Araucaria angustifolia and pinus taeda in the juvenile phase. International Journal of Forestry Research, 2013, Article ID 646759.

How to Cite
Lykholat, Y., Khromykh, N., Didur, O., Alexeyeva, A., Lykholat, T., & Davydov, V. (2018). Modeling the invasiveness of Ulmus pumila in urban ecosystems in conditions of climate change. Regulatory Mechanisms in Biosystems, 9(2), 161-166.