Violations of cell-molecular mechanisms of bone remodeling under influence of glucocorticoids

Keywords: cytokines; hormones; glucocorticoids; remodeling of a bone tissue; adipokines


The fact is disturbance of the processes of bone tissue remodeling leads to a change in the balance between synthesis and resorption of bone and the development of osteoporosis. The most common cause of secondary osteoporosis is the use of glucocorticoid therapy. The aim of this study is to investigate the cellular-molecular mechanisms of disturbance of the processes of bone remodeling regulation, reflected by hormones and intercellular mediators (for example parathyroid hormone, calcitonin, RANKL, osteoprotegerin, P-selectin, interleukin-17, transforming growth factor-β1, adiponectin and visfatin) on the background experimental glucocorticoid osteoporosis. The experimental study carried out in two groups of white female rats. Disturbance of bone tissue remodeling was verified by histological examination of the femoral head, vertebrae of the thoracic and lumbar spine of rats and the measurement of bone density. The study of the levels of hormones and intercellular mediators in the blood serum of animals was carried out by the method of enzyme immunoassay. The bone mineral density of the experimental group was reduced compared to the bone mineral density of the control group. The study of the histostructure of the femoral head and vertebrae in rats of the experimental group in comparison with the animals of the control group revealed changes in the structural organization of bone tissue, confirmed by histomorphometry, indicating inhibition of the processes of osteosynthesis. The article analyzes the nature of the involvement of hormones and cytokines in pathogenetic mechanisms of development of bone tissue disorders. The levels of cytokines RANKL, osteoprotegerin, interleukin-17 and calcitonin in the blood serum of animals of the group with the violation of bone tissue remodeling by glucocorticoids were higher than in intact animals. Serum levels of P-selectin, parathyroid hormone, transforming growth factor-β1, adiponectin and visfatin were lower than similar levels in animals from the control group. The use of glucocorticoids increases the expression of RANKL and inhibits the synthesis of osteoprotegerin, resulting in stimulation of bone resorption. The effect of glucocorticoids in the experimental model is realized by changing the production of the studied hormones, cytokines and adhesion molecules. These changes stimulate the apoptosis of osteoblasts and inhibit their proliferation and differentiation, which is another mechanism of bone loss. Correlations found during the study reflect the relationship in the system of regulation of bone tissue remodeling under the influence of glucocorticoids. A complex system for regulating bone remodeling, which includes many regulatory pathways and their interactions, requires further study.


Adamopoulos, I. E., Chao, C., Geissler, R., Laface, D., Blumenschein, W., Iwakura, Y., McClanahan, T., & Bowman, E. P. (2010). Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Research and Therapy, 12(1), R29.

Al-Suhaimi, E. A., & Shehzad, A. (2013). Leptin, resistin and visfatin: The missing link between endocrine metabolic disorders and immunity. European Journal of Medical Research, 18(1), 12.

Avtandilov, G. G. (1990). Medicinskaja morfometrija [Medical morphometry]. Medicina, Moscow (in Russian).

Brennan-Speranza, T. C., Henneicke, H., Gasparini, S. J., Blankenstein, K. I., Heinevetter, U., Cogger, V. C., Svistounov, D., Zhang, Y., Cooney, G. J., Buttgereit, F., Dunstan, C. R., Gundberg, C., Zhou, H., & Seibel, M. J. (2012). Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. Journal of Clinical Investigation, 122(11), 4172–4189.

Canalis, E., Mazziotti, G., Giustina, A., & Bilezikian, J. P. (2007). Glucocorticoid-induced osteoporosis: Pathophysiology and therapy. Osteoporosis International, 18(10), 1319–1328.

Cinar, N., & Gurlek, A. (2013). Association between novel adipocytokines adiponectin, vaspin, visfatin, and thyroid: An experimental and clinical update. Endocr Connect, 2(4), R30–R38.

Crane, J. L., Xian, L., & Cao, X. (2016). Role of TGF-β signaling in coupling bone remodeling. Methods in Molecular Biology, 1344, 287–300.

Davey, R. A., & Findlay, D. M. (2013). Calcitonin: Physiology or fantasy? Journal of Bone and Mineral Research, 28(5), 973–979.

de Oliveira, C., Iwanaga-Carvalho, C., Mota, J. F., Oyama, L. M., Ribeiro, E. B., & Oller do Nascimento, C. M. (2011). Effects of adrenal hormones on the expression of adiponectin and adiponectin receptors in adipose tissue, muscle and liver. Steroids, 76(12), 1260–1267.

Florencio-Silva, R., Sasso, G. R., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Research International, 2015, 421746.

Iacobellis, G., Iorio, M., Napoli, N., Cotesta, D., Zinnamosca, L., Marinelli, C., Petramala, L., Minisola, S., D'Erasmo, E., & Letizia, C. (2011). Relation of adiponectin, visfatin and bone mineral density in patients with metabolic syndrome. Journal of Endocrinological Investigation, 34(1), 12–15.

Jang, C., Inder, W. J., Obeyesekere, V. R., & Alford, F. P. (2008). Adiponectin, skeletal muscle adiponectin receptor expression and insulin resistance following dexamethasone. Clinical Endocrinology, 69(5), 745–750.

Kaneko, K., Kusunoki, N., Hasunuma, T., & Kawai, S. (2012). Changes of serum soluble receptor activator for nuclear factor-κb ligand after glucocorticoid therapy reflect regulation of its expression by osteoblasts. Journal of Clinical Endocrinology and Metabolism, 97(10), 1909–1917.

Klimova, Z. A., Zaft, A. A., & Zaft, V. B. (2014). Sovremennaja laboratornaja diagnostika osteoporoza [Modern laboratory diagnosis of osteoporosis]. International Journal of Endocrinology, 63(7), 75–84 (in Russian).

Laiguillon, M. C., Houard, X., Bougault, C., Gosset, M., Nourissat, G., Sautet, A., Jacques, C., Berenbaum, F., & Sellam, J. (2014). Expression and function of visfatin (Nampt), an adipokine-enzyme involved in inflammatory pathways of osteoarthritis. Arthritis Research and Therapy, 16(1), R38.

Lee, W. J., Wu, C. S., Lin, H., Lee, I. T., Wu, C. M., Tseng, J. J., Chou, M. M., & Sheu, W. H. (2009). Visfatin-induced expression of inflammatory mediators in human endothelial cells through the NF-κB pathway. International Journal of Obesity (London), 33(4), 465–472.

Li, G. W., Xu, Z., Chen, Q. W., Chang, S. X., Tian, Y. N., & Fan, J. Z. (2013). The temporal characterization of marrow lipids and adipocytes in a rabbit model of glucocorticoid-induced osteoporosis. Skeletal Radiology, 42(9), 1235–1244.

Liu, Y., Chen, Y., Zhao, H., Zhong, L., Wu, L., & Cui, L. (2011). Effects of different doses of dexamethasone on bone qualities in rats. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 28(4), 737–743 (in Chinese).

Liu, Y., Song, C. Y., Wu, S. S., Liang, Q. H., Yuan, L. Q., & Liao, E. Y. (2013). Novel adipokines and bone metabolism. International Journal of Endocrinology, 2013, 895045.

Lu, X., McCoy, K. S., Hu, W., Xu, J., Wang, H., Chen, P., & Chen, H. (2013). Dexamethasone reduces IL-17 and Tim-3 expression in BALF of asthmatic mice. Journal of Huazhong University of Science and Technology. Medical Sciences, 33(4), 479–484.

Luan, X., Lu, Q., Jiang, Y., Zhang, S., Wang, Q., Yuan, H., Zhao, W., Wang, J., & Wang, X. (2012). Crystal structure of human rankl complexed with its decoy receptor osteoprotegerin. Journal of Immunology, 189(1), 245–252.

Mazziotti, G., Formenti, A. M., Adler, R. A., Bilezikian, J. P., Grossman, A., Sbardella, E., Minisola, S., & Giustina, A. (2016). Glucocorticoid-induced osteoporosis: Pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine, 54(3), 603–611.

McKinley, L., Alcorn, J. F., Peterson, A., Dupont, R. B., Kapadia, S., Logar, A., Henry, A., Irvin, C. G., Piganelli, J. D., Ray, A., & Kolls, J. K. (2008). TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. Journal of Immunology, 181(6), 4089–4097.

Morita, M., Yoshida, S., Iwasaki, R., Yasui, T., Sato, Y., Kobayashi, T., Watanabe, R., Oike, T., Miyamoto, K., Takami, M., Ozato, K., Deng, C.-X., Aburatani, H., Tanaka, S., Yoshimura, A., Toyama, Y., Matsumoto, M., Nakamura, M., Kawana, H., Nakagawa, T., & Miyamoto, T. (2016). Smad4 is required to inhibit osteoclastogenesis and maintain bone mass. Scientific Reports, 6, 35221.

Muruganandan, S., & Sinal, C. J. (2014). The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. International Union of Biochemistry and Molecular Biology Life, 66, 147–155.

Oshima, K., Nampei, A., Matsuda, M., Iwaki, M., Fukuhara, A., Hashimoto, J., Yoshikawa, H., & Shimomura, I. (2005). Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochemical and Biophysical Research Communications, 331(2), 520–526.

Pacheco-Pantoja, E. L., Fraser, W. D., Wilson, P. J., & Gallagher, J. A. (2014). Differential effects of adiponectin in osteoblast-like cells. Journal of Receptors and Signal Transduction Research, 34(5), 351–360.

Padmalayam, I., & Suto, M. (2013). Role of adiponectin in the metabolic syndrome: Current perspectives on its modulation as a treatment strategy. Current Pharmaceutical Design, 19(32), 5755–5763.

Plotkin, L. I., Weinstein, R. S., Parfitt, A. M., Roberson, P. K., Manolagas, S. C., & Bellido, T. (1999). Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. Journal of Clinical Investigation, 104, 1363–1374.

Podkovkin, V. G., Ivanov, D. G., & Ivanov, G. A. (2008). Vlijanie postojannogo magnitnogo polja na sostojanie kostnoj tkani krys s povyshennym urovnem rezorbcii [The effect of magnetic field on the bone tissue status in rats with high level bone resorption]. Advances in Current Natural Sciences. Biological Sciences, 7, 13–16 (in Russian).

Remuzgo-Martínez, S., Genre, F., López-Mejías, R., Ubilla, B., Mijares, V., Pina, T., Corrales, A., Blanco, R., Martín, J., Llorca, J., & González-Gay, M. A. (2016). Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis. Scientific reports, 6, 29713.

Sage, A. P., Tintut, J., & Demer, L. L. (2010). Regulatory mechanisms in vascular calcification. Nature Reviews Cardiology, 7(9), 528–536.

Scialla, J. J., Leonard, M. B., Townsend, R. R., Appel, L., Wolf, M., Budoff, M. J., Chen, J., Lustigova, E., Gadegbeku, C. A., Glenn, M., Hanish, A., Raj, D., Rosas, S. E., Seliger, S. L., Weir, M. R., Parekh, R. S., & CRIC Study Group. (2011). Correlates of osteoprotegerin and association with aortic pulse wave velocity in patients with chronic kidney disease. Clinical Journal of the American Society of Nephrology, 6(11), 2612–2619.

Sharma, S., Tandon, V. R., Mahajan, S., Mahajan, V., & Mahajan, A. (2014). Obesity: Friend or foe for osteoporosis. Journal of Mid-Life Health, 5(1), 6–9.

Tsiklauri, L., Werner, J., Frommer, K. W., Müller-Ladner, U., Rehart, S., Wenisch, S., & Neumann, E. (2016). Differentiation of spongiosa-derived mesenchymal stromal cells from osteoporosis and osteoarthritis patients are influenced by adipokines. Arthritis and Rheumatology, 68(10).

Tu, Q., Zhang, J., Dong, L. Q., Saunders, E., Luo, E., Tang, J., & Chen, J. (2011). Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. Journal of Biological Chemistry, 286(14), 12542–12553.

Wan, M., Li, C., Zhen, G., Jiao, K., He, W., Jia, X., Wang, W., Shi, C., Xing, Q., Chen, Y. F., Jan De Beur, S., Yu, B., & Cao, X. (2012). Injury-activated TGFβ controls mobilization of MSCs for tissue remodeling. Stem cells, 30(11), 2498–2511.

Weinstein, R. S. (2011). Clinical practice. Glucocorticoid-induced bone disease. New England Journal of Medicine, 365(1), 62–70.

Xiping, Z., Jun, F., Jie, Z., Bingyan, Y., Jing, M., Wei, Z., Jing, Y., Penghui, J., Wenqin, Y., Ninnin, Z., & Jiao, H. (2010). Influence of dexamethasone on the expression levels of P-selectin protein in multiple organs of rats with severe acute pancreatitis. Inflammation Research, 59(1), 31–39.

Yamashita, H., Ochiai, H., Saito, A., Shintani, S., & Azuma, T. (2014). Phosphoinositide 3-kinase (PI3K) activation is differentially regulated during osteogenesis induced by TGF-β1 and BMP-2/BMP-7. Journal of Hard Tissue Biology, 23(1), 9–14.

Zeng, M., Li, Z.-Y., Ma, J., Cao, P.-P., Wang, H., Cui, Y.-H., & Liu, Z. (2015). Clarithromycin and dexamethasone show similar anti-inflammatory effects on distinct phenotypic chronic rhinosinusitis: An explant model study. BMC Immunology, 16, 37.

Zubairova, L. D., Mustafin, I. G., & Nabiullina, R. M. (2013). Patogeneticheskie podhody k issledovaniju markerov venoznogo tromboza [Pathogenetic approach to venous thrombosis markers examination]. Vestnik of Kazan State Medical University, 94(5), 685–692 (in Russian).

How to Cite
Pavlov, S. B., Babenko, N. M., Kumetchko, M. V., & Litvinova, O. B. (2018). Violations of cell-molecular mechanisms of bone remodeling under influence of glucocorticoids. Regulatory Mechanisms in Biosystems, 9(1), 124-129.