Strains of lactic acid bacteria isolated from traditional Carpathian cheeses

Keywords: cheese bryndza; cheese buts; tinctorial properties; polymerase chain reaction; RAPD-typing


Traditional national fermented products and cheeses are a source for the search for species and strains of lactic acid bacteria (LAB) which are not within the range of bacterial agents used in the dairy industry. Classical and modern genetic-molecular methods are used to identify LAB isolated from such products. The purpose of our work was isolation and identification of LAB from traditional Carpathian cheeses made from ewe's milk and the study of their technological properties. Three samples of cheese were selected for our research – one sample of brine cheese bryndza and one sample of budz (bryndza before salting), produced in the highlands of the Carpathians and one sample of buts, produced in the foothills zone. 106 cultures were isolated from the samples of cheese. Genus and species identification was completed using classical microbiological and molecular genetics methods. Based on the complex of tinctorial, cultural, physiological and biochemical indices, the LAB isolated were assigned to the following genera and species: Lactococcus spp. (26 cultures), including L. lactis (13 cultures) and L. garvieae (13 cultures); Lactobacillus spp. – L. plantarum (31 cultures); Enterococcus spp. – E. faecium (25 cultures); Leuconostoc spp. – L. mesenteroides (24 cultures). These results were confirmed by molecular genetics methods. The largest range of species was found in a sample of bryndza from the Carpathian highlands. The isolated cultures were studied according to technological properties – milk-coagulation activity, acid-forming ability and resistance to different concentrations of kitchen salt. Most strains of L. lactis ssp. lactis, L. plantarum and L. mesenteroides were active acid-forming agents and coagulated milk in 3–9 hours, while L. garvieae and E. faecium coagulated milk after more than 24 hours. More than 80% of cultures showed resistance to 4% of kitchen salt solution, E. faecium was observed to have the highest salt tolerance. The results of RAPD typing showed significant intra-species heterogeneity, which indicates the need for further research on identification of individual strains. In all samples of cheese, L. lactis, L. garvieae, E. faecium were detected, which shows that they are typical representatives within the traditional Carpathian bryndza. Particular attention was paid to E. faecium, as many researchers have indicated probiotic properties of individual strains, as well as the ability to synthesize volatile substances that enrich the flavor bouquet of cheeses. Today strains of E. faecium are involved in the bacterial composition of starter cultures for cheeses.


Amaral, D. M. F., Silva, L. F., Casarotti, S. N., Nascimento, L. C. S., & An, L. B. (2016). Penna Enterococcus faecium and Enterococcus durans isolated from cheese: Survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. Journal of Dairy Science, 100, 933–949.

Ammor, M., Flórez, A., & Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology, 24(6), 559–570.

Ao, X., Zhang, X., Shi, L., Zhao, K., & Yu, J. (2012). Identification of lactic acid bacteria in traditional fermented yak milk and evaluation of their application in fermented milk products. Journal of Dairy Science, 95, 1073–1084.

Bao, Q., Liu, W., Yu, J., Wang, W., Qing, M., Chen, X., Wang, F., Zhang, J., Zhang, W., Qiao, J., Sun, T., & Zhang, H. (2012). Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China. Journal of General and Applied Microbiology, 58, 95–105.

Belicov, A., Krzkov, L., Krajcovic, J., Jurkovic, D., Sojka, M., Ebringer, L., & Duinsk, R. (2007). Antimicrobial susceptibility of Enterococcus species isolated from Slovak Bryndza cheese. Folia Microbiologica (Praha), 52(2), 115–119.

Chaharovskyy, V. P., & Zholkevskaya, Y. H. (2003). Byotekhnolohyya poluchenyya byoyohurtov y byokefyra, yzuchenye ykh vlyyanyya na zdorov'e cheloveka [Biotechnology for producing bio-yogurt and biochephor, studying their effect on human health]. Mikrobiolohichnyy Zhurnal, 65(6), 67–73.

Cocolin, L., Rantsiou, K., Iacumin, L., Urso, R., Cantoni, C., & Соті, G. (2004). Study of ecology of fresh sausages end characterization of populations of lactic acid bacteria by molecular methods. Applied and Environmental Microbiology, 70(3), 1883–1894.

Culumber, M., McMahon, D. J., Ortakci, F., Montierth, L., Villalba, B., Broadbent, J. R., & Oberg, C. J. (2017). Geographical distribution and strain diversity of Lactobacillus wasatchensis isolated from cheese with unwanted gas formation. Journal of Dairy Science, 100, 8764–8767.

Diduh, N. A., Chagarovs'kyj, O. P., & Lysogor, T. A. (2008). Zakvashuval'ni kompozycii' dlja vyrobnyctva molochnyh produktiv funkcional'nogo pryznachennja [Starter compositions for the production of dairy products of functional purpose]. Poligraf, Odesa (in Ukrainian).

Fortina, M. G., Ricci, G., Foschino, R., Picozzi, C., Dolci, P., Zeppa, G., Cocolin, L., & Manachini, P. L. (2007). Phenotypic typing, technological properties and safetynaspects of Lactococcus garvieae strains from dairy environments. Journal of Applied Microbiology, 103, 445–453.

Franz, C. M., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods – а conundrum for food safety. International Journal of Food Microbiology, 88, 105–122.

Franz, C. M., Huch, M., Abriouel, H., Holzapfel, W., & Galvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151, 125–140.

Giraffa, G., Chanishvili, N., & Widyastuti, Y. (2010). Importance of lactobacilli in food and feed biotechnology. Journal Research in Microbiology, 161(6), 480–487.

Goh, H. F., & Philip, K. (2015). Isolation and mode of action of bacteriocin BacC1 producedby nonpathogenic Enterococcus faecium C1. Journal of Dairy Science, 98(8), 5080–5090.

Kigel', N. F. (2003). Tehnologii' bakterial'nyh preparativ dlja funkcional'nyh produktiv i biologichno aktyvnyh dobavok [Technologies of bacterial preparations for functional products and biologically active additives]. Kyi'v (in Ukrainian).

Kimoto-Nira, H., Aoki, R., Mizumachi, K., Sasaki, K., Naito, H., Sawada, T., & Suzuki, C. (2012) Interaction between Lactococcus lactis and Lactococcus rafinolactis during growth in milk: Development of a new starter culture. Journal of Dairy Science, 95, 2176–2185.

Kovalenko, N. K., Kasumova, S. A., & Golovach, T. N. (1994). Gerolakt – fermentirovannyj molochnyj produkt dlja prodlenija aktivnogo dolgoletija [Gerolakt – fermented dairy product for the prolongation of active longevity]. Medicinskie Aspekty Mikrobnoj Jekologii, 7/8, 197–202 (in Russian).

Kovalenko, N. K., & Lashhevskij, V. V. (2003). Primenenie metoda polimeraznoj cepnoj reakcii (PCR) dlja identifikacii molochnokislyh bakterij [The use of polymerase chain reaction (PCR) for the identification of lactic acid bacteria]. Molochna Promislovіst', 1(4), 24–25.

Kvasnikov, E. I., & Nesterenko, O. A. (1975). Molochnokislye bakterii i puti ih ispol'zovanija [Lactic acid bacteria and ways of their use]. Nauka, Moscow (in Russian).

Liu, W., Bao, Q., Jirimutu, Qing, M., Siriguleng, Chen, X., Sun, T., Li, M., Zhang, J., Yu, J., Bilige, M., Sun, T., & Zhang, H. (2012). Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Journal of Microbiology Research, 167, 110–115.

Lu, W., Kong, W., Yang, P., & Kong, J. (2015). A one-step PCR-based method for specific identification of 10 common lactic acid bacteria and Bifidobacterium in fermented milk. International Dairy Journal, 41, 7–12.

Mayo, B., Rachid, C. T., Alegria, A., Leite, A. M., Peixoto, R. S., & Delgado, S. (2014). Impact of next generation sequencing techniques in food microbiology. Current Genomics, 15, 293–309.

Moreno, F., Sarantinopoulos, M. R., Tsakalidou, P. E., & DeVuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, 106, 1–24.

Natarajan, P., & Parani, M. (2015). First complete genome sequence of a probiotic Enterococcus faecium strain T-110 and its comparative genome analysis with pathogenic and non-pathogenic Enterococcus faecium genomes. Journal of Genetics and Genomics, 42, 43–46.

Naumenko, O. V. (2005). Rozrobka tekhnolohii bakterialnykh preparativ iz zaluchenniam Lactobacillus casei ssp. dlia vyrobnytstva funktsionalnykh molochnykh napoiv [Development of bacterial drug technology involving Lactobacillus casei ssp. for the production of functional milk drinks]. Kyiv (in Ukrainian).

Neviani, E., Dea Lindner, J. D., Bernini, V., & Gatti, M. (2009). Recovery and differentiation of long ripened cheese microflora through a new cheese-based cultural medium. Food Microbiology, 26, 240–245.

Novelli, G., & Reichardt, V. (2000). Molecular basis of disorders of human galactose metabolism: Past, present, and future. Molecular Genetics and Metabolism, 71(2), 62–65.

Oberg, C. J., Oberg, T. S., Culumber, M. C., Ortakci, F., Broadbent, J. R., & McMahon, D. J. (2016). Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese. International Journal of Systematic and Evolutionary Microbiology, 66, 158–164.

Ortakci, F., Broadbent, J. R., Oberg, C. J., & McMahon, D. J. (2015). Growth and gas formation by Lactobacillus wasatchensis, a novel obligatory heterofermentative nonstarter lactic acid bacterium, in Cheddar-style cheese made using a Streptococcus thermophilus starter. Journal of Dairy Science, 98, 7473–7482.

Podgorskyj, B. C., & Kovalenko, N. K. (2002). Produkty funkcyonal'nogo pytanyja na osnove molochnokyslyh bakteryj [Functional food products based on lactic acid bacteria]. I Mezhdunarodnyj Kongress “Byotehnologyja – Sostojanye y Perspektyvy Razvytyja”. Moscow (in Russian).

Poznanski, E., Cavazxa, A., Cappa, P., & Cocconcelli, P. S. (2004). Indigenous raw milk microbiota influences the bacterial development in traditional cheese from an alpine natural park. International Journal of Food Microbiology, 92(2), 141–151.

Rehaiem, A., Belgacem, Z. B., Edalatian, M. R., Martínez, B., Rodríguez, A., Manai, M., & Guerra, N. P. (2014). Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control, 37, 343–350.

Saarela, M., Mogensen, G., Fonden, R., Matto, J., & Mattila-Sandholm, T. (2000). Probiotic bacteria: Safety, functional and technological properties. Journal of Biotechnology, 84(3), 197–215.

Serio, A., Paparella, A., Chaves-Lopez, C., Corsetti, A., & Suzzi, G. (2007). Enterococcus populations in Pecorino Abruzzese cheese: Biodiversity and safety aspects. Journal of Food Protection, 70(7), 1561–1568.

Vasyljuk, O. M., Kovalenko, N. K., Garmasheva, I. L., & Oleshhenko, L. T. (2014). Vydilennja ta identyfikacija bakterij rodu Lactobacillus z fermentovanyh produktiv riznyh regioniv Ukrai'ny [Isolation and identification of bacteria of the genus Lactobacillus from fermented products of different regions of Ukraine]. Mikrobiologichnyj Zhurnal, 76(2), 2–9 (in Ukrainian).

Vaillancourt, K., LeMay, J. D., Lamoureux, M., Frenette, M., Moineau, S., & Vadeboncoeur, C. (2004). Characterization of a galactokinase-positivc recombinant strain of Streptococcus thermophilus. Applied and Environmental Microbiology, 70(4), 4596–4603.

Veljovic, K., Terzic-Vidojevic, A., Vukasinovic, M., Strahinic, I., Begovic, J., Lozo, J., Ostojic, M., & Topisirovic, L. (2007). Preliminary characterization of lactic acid bacteria isolated from Zlatar cheese. Journal of Applied Microbiology, 6, 2142–2152.

Yu, J., Gao, W., Qing, M., Sun, Z., Wang, W., Liu, W., Pan, L., Sun, T., Wang, H., Bai, N., & Zhang, H. (2012). Identification and characterization of lactic acid bacteria isolated from traditional pickles in Sichuan, China. Journal of General and Applied Microbiology, 58, 163–172.

Yu, J., Wang, W. H., Menghe, B. L., Jiri, M. T., Wang, H. M., Liu, W. J., Bao, Q. H., Lu, Q., Zhang, J. C., Wang, F., Xu, H. Y., Sun, T. S., & Zhang, H. P. (2011). Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. Journal of Dairy Science, 94(7), 3229–3241.

Zhang, F., Qiu, L., Xu, X., Liu, Z., Zhan, H., Tao, X., Shah, N. P., & Wei, H. (2017). Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rat. Journal of Dairy Science, 100, 2018–1028.

Zhang, F., Jiang, M., Wan, C., Chen, X., Chen, X., Tao, X., Shah, N. P., & Wei, H. (2016). Screening probiotic strains for safety: Evaluation of virulence and antimicrobial susceptibility of enterococci from healthy Chinese infants. Journal of Dairy Science, 99, 4282–4290.

Zhong, Z., Hou, Q., Kwok, L., Yu, Z., Zheng, Y., Sun, Z., Menghe, B., & Zhang, H. (2016). Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type. Journal of Dairy Science, 99, 7832–7841.


How to Cite
Slyvka, I. M., Tsisaryk, O. Y., Dronyk, G. V., & Musiy, L. Y. (2018). Strains of lactic acid bacteria isolated from traditional Carpathian cheeses. Regulatory Mechanisms in Biosystems, 9(1), 62-68.