Modern magnetic immunoassay: Biophysical and biochemical aspects

Keywords: serologic diagnostics; magnetic particles; biochemical and physical methods

Abstract

In this review article an analysis of the biochemical and biophysical aspects of modern magnetic immunoassay (MIA) is conducted and additionally the problems and perspectives of its application in biology, biotechnology and medicine are defined. Magnetic immunoassay should be considered as an evolutionary extension of the classical immunoassay. MIA can have many variants of modifications, similar to the classic immunoenzymatic assay. The key distinctive element of the MIA is the use of magnetic particles (MPs), which are usually nanoparticles. MPs in the MIA can act as a marker for detection, or the solid phase at which the immunochemical reaction takes place. MIA possesses basic advantages over classical immunoassay methods: thanks to the unique magnetic properties of the MPs and the ability to manipulate it in the external magnetic field, it is possible to increase the informative value of the analysis (first of all, sensitivity and specificity), as well as the rigid requirements for “purity” of tested samples. For the purposes of immunoassay, magnetic particles of size from 10 to 200 nm are important, since such particles are in a superparamagnetic state, in the absence of strong magnetic fields; they are not agglomerated in a liquid medium. The size of the spherical particle determines the rate of sedimentation and mobility in the solution. The outer polymeric membrane serves as a matrix in which the surface functional groups are added, and also protects the core of the metal from the external environment. The outer shell may also consist of agarose, cellulose, porous glass, silicon dioxide etc. There are several strategies for the synthesis of nanoparticles: mechanical (dispersion), physical (gas phase deposition), wet chemical methods (chemical comprecipitation, thermal decomposition, methods of micro emulsion, hydrothermal reactions) and physico-chemical methods. Also used are magnesite nanoparticles of biogenic origin. Magnetic particles may function, and this is important for immunoassay. Surface functional groups include carboxylic, amino, epoxy, hydroxyl, tosyl, and N-hydroxysuccinate-activated groups. Magnetic spherical particles usually interact with surface molecules such as streptovidine, biotin, protein A, protein G, and immunoglobulin etc. Directions and prospects of the development of methods of magnetic immunoassay are determined, mainly, by the development of methods for detecting or influencing magnetic particles. In this case, the classical methods of detection are electrochemical methods, electrochemiluminescence, fluorescence. More modern ones include giant magnetoresistance, superconducting quantum interference devices, surface-enhanced Raman spectroscopy, biosensors based on nonlinear magnetization, magneto-PCR immunoassay. The current trend is to combine or integrate the application of various biochemical, physical, molecular and genetic, physico-chemical detection methods. In fact, all of these benefits undoubtedly open up broad prospects for the practical application of MIA in biology, biotechnology and medicine.

References

Aseri, A., Kumar, G. S., Nayak, A., Trivedi, S. K., & Ahsan, J. (2015). Magnetic nanoparticles: Magnetic nano-technology using biomedical applications and future prospects. International Journal of Pharmaceutical Sciences Review and Research, 31(2), 119–131.


Beshkar, F., Khojasteh, H., & Salavati-Niasari, M. (2017). Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. Journal of Colloid and Interface Science, 497, 57–65.


Burgos-Ramos, E., Martos-Moreno, G. A., Argente, J., & Barrios, V. (2012). Multiplexed bead immunoassays: Advantages and limitations in pediatrics. In: Norman, H. L., Christopoulos, C., & Christopoulos, T. K. (eds.). Advances in Immunoassay Technology.


Chen, C. H., Wen, C. P., & Tsai, M. K. (2016). Fecal immunochemical test for colorectal cancer from a prospective cohort with 513,283 individuals: Providing detailed number needed to scope (NNS) before colonoscopy. Medicine (Baltimore), 95(36), e4414.


Choi, J. W., Oh, K. W., Thomas, J. H., Heineman, W. R., Halsall, H. B., Nevin, J. H., Helmicki, A. J., Henderson, H. T., & Ahn, C. H. (2001). An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab on a Chip, 2(1), 27–30.


Crespo, R. D., Elbaile, L., Carrizo, J., & García, J. A. (2018). Optimizing the sensitivity of a GMR sensor for superparamagnetic nanoparticles detection: Micromagnetic simulation. Journal of Magnetism and Magnetic Materials, 446, 37–43.


Day, J. B., & Basavanna, U. (2015). Magnetic bead based immuno-detection of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables using the Bio-Plex suspension array system. Food Microbiology, 46, 564–572.


De Roeck, Y., Philipse, E., Twickler, T. B., & Van Gaal, L. (2017). Misdiagnosis of Graves’ hyperthyroidism due to therapeutic biotin intervention. Acta Clinica Belgica, 1–5.


Dittmer, W. U., Evers, T. H., Hardeman, W. M., Huijnen, W., Kamps, R., de Kievit, P., Neijzen, J. H., Nieuwenhuis, J. H., Sijbers, M. J., Dekkers, D. W., Hefti, M. H., & Martens, M. F. (2010). Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor. Clinica Chimica Acta, 411(11–12), 868–873.


Drung, D., Assmann, C., Beyer, J., Kirste, A., Peters, M., Ruede, F., & Schurig, T. (2007). Highly sensitive and easy-to-use SQUID sensors. IEEE Transactions on Applied Superconductivity, 17(2), 699–704.


Eberbeck, D., Bergemann, C., Wiekhorst, F., Steinhoff, U., & Trahms, L. (2008). Quantification of specific bindings of biomolecules by magnetorelaxometry. Journal of Nanobiotechnology, 6, 4.


Fert, A. (2008). Nobel lecture: Origin, development, and future of spintronics. Reviews of modern physics, 80, 1517–1530.


Foglia, S., Ledda, M., Fioretti, D., Iucci, G., Papi, M., Capellini, G., Grazia, L. M., Grimaldi, S., Rinaldi, M., & Lisi, A. (2017). In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Scientific Reports, 7, 46513.


Galán, A., Comor, L., Horvatić, A., Kuleš, J., Guillemin, N., Mrljaka, V., & Bhide, M. (2016). Library-based display technologies: Where do we stand? Molecular BioSystems, 12, 2342–2358.


Galkin, А. Y. (2014a). Modern methods of serological diagnosis of infectious and non-infectious diseases: Enzyme immunoassay, lateral flow immunoassay, immumoblot. Journal of Health Sciences, 4(16), 179–188.


Galkin, O. Y. (2014b). Porivnyal’na harakterystyka metodiv epitopnogo kartuvannya antygeniv proteyinovoyi pryrody [Comparative characteristic of methods of epitope mapping of antigens of protein nature]. Ukrainian Biochemical Journal, 86(4), 164–177 (in Ukrainian).


Galkin, A. Y., Komar, A. G., & Grigorenko, A. A. (2015). Bioanalytical standardizing for serological diagnostic medical devices. Biotechnologia Acta, 8(2), 112–119.


Gehring, A. G., Irwin, P. L., Reed, S. A., Tua, S., Andreotti, P. E., & Akhavan-Tafti, H. R. S. (2004). Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli. Journal of Immunological Methods, 293, 97–106.


Ghodbane, S., Lahbib, A., Sakly, M., & Abdelmelek, H. (2013). Bioeffects of static magnetic fields: Oxidative stress, genotoxic effects, and cancer studies. BioMed Research International, 2013, 602987.


Giannetto, M., Bianchi, M. V., Mattarozzi, M., & Careri, M. (2017). Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: A potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma. Analytica Chimica Acta, 991, 133–141.


Gorobets, Y. I., Gorobets, S. V., & Gorobets, O. Y. (2013a). Biomineralization of intracellular biogenic magnetic nanoparticles and their expected functions. The Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 3, 28–33.


Gorobets, S. V., Gorobets, O. Y., & Demyanenko, I. V. (2013b). Self-organization of magnetite nanoparticles in providing Saccharamyces cerevisiaе yeasts with magnetic properties. Journal of Magnetism and Magnetic Materials, 337, 53–57.


Gorobets, O. Y., Gorobets, S. V., & Gorobets, Y. I. (2014a). Biogenic magnetic nanoparticles: Biomineralization in prokaryotes and eukaryotes. In: Dekker encyclopedia of nanoscience and nanotechnology, Third Edition. Taylor and Francis, New York.


Gorobets, O. Y., Gorobets, S. V., & Sorokina, L. V. (2014b). Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi. Functional Materials, 21(4), 427–436.


Gorobets, O., Gorobets, S., & Koralewski, M. (2017). Physiological origin of biogenic magnetic nanoparticles in health and disease: From bacteria to humans. International Journal of Nanomedicine, 12, 4371–4395.


Han, C., Zhao, D., Deng, C., & Hu, K. (2012). A facile hydrothermal synthesis of porous magnetite microspheres. Materials Letters, 70, 70–72.


Han, Y. A., Ju, J., Yoon, Y., & Kim, S. M. (2014). Fabrication of cost-effective surface enhanced Raman spectroscopy substrate using glancing angle deposition for the detection of urea in body fluid. Journal of Nanoscience and Nanotechnology, 14(5), 3797–3799.


Hermanson, G. (2008). Bioconjugate techniques (3rd ed.). Academic Press.


Hoyoung, P., Hwang, M. P., & Lee, K. H. (2013). Immunomagnetic nanoparticle-based assays for detection of biomarkers. International Journal of Nanomedicine, 8, 4543–4552.


Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. International Journal of Molecular Sciences, 14(11), 21266–21305.


Kala, M., Bajaj, K., & Sinha, S. (1997). Magnetic bead enzyme-linked immunosorbent assay (ELISA) detects antigen-specific binding by phage-displayed scFv antibodies that are not detected with conventional ELISA. Analytical Biochemistry, 254, 263–266.


Kim, D., Marchetti, F., Chen, Z., Zaric, S., Wilson, R. J., Hall, D. A., Gaster, R. S., Lee, J. R., Wang, J., Osterfeld, S. J., Yu, H., White, R. M., Blakely, W. F., Peterson, L. E., Bhatnagar, S., Mannion, B., Tseng, S., Roth, K., Coleman, M., Snijders, A. M., Wyrobek, A. J., & Wang, S. X. (2013). Nanosensor dosimetry of mouse blood proteins after exposure to ionizing radiation. Scientific Reports, 3, 2234.


Kolhatkar, A. G., Dannongoda, C., Kourentzi, K., Jamison, A. C., Nekrashevich, I., Kar, A., Cacao, E., Strych, U., Rusakova, I., Martirosyan, K. S., Litvinov, D., Lee, T. R., & Willson, R. C. (2015). Enzymatic synthesis of magnetic nanoparticles. International Journal of Molecular Sciences, 16(4), 7535–7550.


Konthur, Z., Wilde, J., & Lim, T. S. (2010). Semi-automated magnetic bead-based antibody selection from phage display libraries. In: Kontermann, R., & Dubel, S. (eds.). Antibody engineering. Vol. 1. Springer-Verlag Berlin Heidelberg, 267–287.


Kourilov, V., & Steinitz, M. (2002). Magnetic-bead enzyme-linked immunosorbent assay verifies adsorption of ligand and epitope accessibility. Analytical Biochemistry, 311(2), 166–170.


Kurlyandskaya, G. V., Portnov, D. S., Beketov, I. V., Larrañaga, A., Safronov, A. P., Orue, I., Medvedev, A. I., Chlenova, A. A., Sanchez-Ilarduya, M. B., Martinez-Amesti, A., & Svalov, A. V. (2017). Nanostructured materials for magnetic biosensing. Biochimica et Biophysica Acta, 1861(6), 1494–1506.


Li, D., Feng, S., Huang, H., Chen, W., Shi, H., Liu, N., Chen, L., Chen, W., Yu, Y., & Chen, R. (2014). Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. Journal of Nanoscience and Nanotechnology, 10(3), 478–484.


Liao, S.-H., & Su, Y.-K. (2017). Determining the time-dependent effective relaxation time of biofunctionalized magnetic nanoparticles conjugated with biotargets by using a high-Tc SQUID-based ac susceptometer for a magnetic immunoassay. Sensors and Actuators B: Chemical, 238, 66–70.


Lin, Y., Xu, G., Wei, F., Zhang, A., Yang, J., & Hu, Q. (2016). Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe₂O₃@Au nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 121, 135–140.


Lin, Y. H., Chen, Y. J., Lai, C. S., Chen, Y. T., Chen, C. L., Yu, J. S., & Chang, Y. S. (2013). A negative-pressure-driven microfluidic chip for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay. Biomicrofluidics, 7(2), 24103.


Luo, S., Liu, Y., Rao, H., Wang, Y., & Wang, X. (2017). Fluorescence and magnetic nanocomposite Fe3O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection. Analytical Biochemistry, 538, 26–33.


Lutsenko, T. N., Kovalenko, M. V., & Galkin, O. Y. (2017). Validation of biological activity testing procedure of recombinant human interleukin-7. Ukrainian Biochemical Journal, 89(1), 82–89.


Malou, N., & Raoult, D. (2011). Immuno-PCR: A promising ultrasensitive diagnostic method to detect antigens and antibodies. Trends in Microbiology, 19(6), 295–302.


Manera, M. G., Pellegrini, G., Lupo, P., Bello, V., Fernández, C. J., Casoli, F., Rella, S., Malitesta, C., Albertini, F., Mattei, G., & Rella, R. (2017). Functional magneto-plasmonic biosensors transducers: Modelling and nanoscale analysis. Sensors and Actuators B: Chemical, 239, 100–112.


Mani, V., Chikkaveeraiah, B. V., & Rusling, J. F. (2011). Magnetic particles in ultrasensitive biomarker protein measurements for cancer detection and monitoring. Expert Opinion on Medical Diagnostics, 5(5), 381–391.


McConnell, S. J., Dinh, T., Le, M. H., & Spinella, D. G. (1999). Biopanning phage display libraries using magnetic beads vs. polystyrene plates. Biotechniques, 26(208–10), 214.


Mohapatra, M., & Anand, S. (2010). Synthesis and applications of nanostructured iron oxides/hydroxides. International Journal of Engineering, Science and Technology, 2(8), 127–146.


Morozov, V. N., Groves, S., Turell, M. J., & Bailey, C. (2007). Three minutes-long electrophoretically assisted zeptomolar microfluidic immunoassay with magnetic-beads detection. Journal of the American Chemical Society, 129(42), 12628–12629.


Mulvaney, S. P., Cole, C. L., Kniller, M. D., Malito, M., Tamanaha, C. R., Rife, J. C., Stanton, M. W., & Whitman, L. (2007). Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics. Journal of Biosensors and Bioelectronics, 23(2), 191–200.


Mulvaney, S. P., Myers, K. M., Sheehan, P. E., & Whitman, L. J. (2009). Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays. Journal of Biosensors and Bioelectronics, 24(5), 1109–1115.


Nagasaki, Y., Kobayashi, H., Katsuyama, Y., Jomura, T., & Sakura, T. (2007). Enhanced immunoresponse of antibody/mixed-PEG co-immobilized surface construction of high-performance immunomagnetic ELISA system. Journal of Colloid and Interface Science, 309(2), 524–530.


Nakatani, Y., Hayashi, T., Miyato, Y., & Itozaki, H. (2012). Laser SQUID microscope for the evaluation of solar cell. Physics Procedia, 36, 394–399.


Nie, Y., Zhang, P., Wang, H., Zhuo, Y., Chai, Y. Q., & Yuan, R. (2017). An ultrasensitive electrochemiluminescence biosensing platform for detection of multiple types of biomarkers toward identical cancer on a single interface. Analytical Chemistry.


Nikitin, P., Ksenevich, T., Nikitin, M., & Gorshkov, B. (2008a). Opto-magnetic assays based on magnetic nanoparticles and optical label-free biosensors. Proceedings of Ninth European Conference on Optical Chemical Sensors and Biosensors, EUROPT(R)ODE IX, Dublin, P. OA4.2.


Nikitin, M. P., Torno, M., Chen, H., Rosengart, A., & Nikitin P. I. (2008b). Quantitative real-time in vivo detection of magnetic nanoparticles by their non-linear magnetization. Journal of Applied Physics, 103(7), 07A304.


Nikitin, M. P., Orlov, A. V., Znoyko, S. L., Bragina, V. A., Gorshkov, B. G., Ksenevich, T. I., Cherkasov, V. R., & Nikitin, P. I. (2017). Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method. Journal of Magnetism and Magnetic Materials, In press.


Orlov, A. V., Khodakova, J. A., Nikitin, M. P., Shepelyakovskaya, A. O., Brovko, F. A., Laman, A. G., Grishin, E. V., & Nikitin, P. I. (2013). Magnetic immunoassay for detection of staphylococcal toxins in complex media. Analytical Chemistry, 85(2), 1154–1163.


Orlov, A. V. (2014). Razrabotka metodov immunoanaliza s ispol’zovaniem magnitnyih nanomarkerov [Development of immunoanalization methods using magnetic nanomarkers]. Moscow (in Russian).


Pallaoro, A., Hoonejani, M. R., Braun, G. B., Meinhart, C. D., & Moskovits, M. (2015). Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano, 9(4), 4328–4336.


Park, J. (2016). A giant magnetoresistive reader platform for quantitative lateral flow immunoassays. Sensors and Actuators A: Physical, 250, 55–59.


Philippova, O., Barabanova, A., Molchanov, V., & Khokhlov, A. (2011). Magnetic polymer beads: Recent trends and developments in synthetic design and applications. European Polymer Journal, 47(4), 542–559.


Rajput, S., Pittman, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346.


Rizzi, G., Lee, J. R., Guldberg, P., Dufva, M., Wang, S. X., & Hansen, M. F. (2017). Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array. Journal of Biosensors and Bioelectronics, 93, 155–160.


Rong, Z., Wang, C., Wang, J., Wang, D., Xiao, R., & Wang, S. (2016). Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosensors and Bioelectronics, 84, 15–21.


Rusling, J. F., Kumar, C. V., Gutkind, J. S., & Patele, V. (2010). Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst, 135(10), 2496–2511.


Saari, M. M., Tsukamoto, Y., Kusaka, T., Ishihara, Y., Sakai, K., Kiwa, T., & Tsukada, K. (2015). Effect of diamagnetic contribution of water on harmonics distribution in a dilute solution of iron oxide nanoparticles measured using high-Tc SQUID magnetometer. Journal of Magnetism and Magnetic Materials, 394, 260–265.


Salek-Maghsoudi, A., Vakhshiteh, F., Torabi, R., Hassani, S., Ganjali, M. R., Norouzi, P., Hosseini, M., & Abdollahi, M. (2018). Recent advances in biosensor technology in assessment of early diabetes biomarkers. Journal of Biosensors and Bioelectronics, 99, 122–135.


Santhoshkumar, J., Rajeshkumar, S., & Venkat, K. S. (2017). Phyto-assisted synthesis, characterization and applications of gold nanoparticles. Biochemistry and Biophysics Reports, 11, 46–57.


Shevchenko, K. G., Cherkasov, V. R., Tregubov, A. A., Nikitin, P. I., & Nikitin, M. P. (2017). Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly and disassembly systems. Journal of Biosensors and Bioelectronics, 88, 3–8.


Shipunova, V. O., Nikitin, M. P., Lizunova, A. A., Ermakova, M. A., Deyev, S. M., & Petrov, R. V. (2013). Polyethyleneimine-coated magnetic nanoparticles for cell labeling and modification. Doklady Biochemistry and Biophysics, 452(1), 245–247.


Shlyapnikov, Y. M., Shlyapnikova, E. A., Simonova, M. A., Shepelyakovskaya, A. O., Brovko, F. A., Komaleva, R. L., Grishin, E. V., & Morozov, V. N. (2012). Rapid simultaneous ultrasensitive immunodetection of five bacterial toxins. Analytical Chemistry, 84(13), 5596–5603.


Smith-Bindman, R., Miglioretti, D. L., Johnson, E., Lee, C., Feigelson, H. S., Flynn, M., Greenlee, R. T., Kruger, R. L., Hornbrook, M. C., Roblin, D., Solberg, L. I., Vanneman, N., Weinmann, S., & Williams, A. E. (2012). Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. Journal of the American Medical Association, 307(22), 2400–2409.


Sood, A., Arora, V., Shah, J., Kotnala, R. K., & Jain, T. K. (2017). Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Materials Science and Engineering. C, Materials for Biological Applications, 80, 274–281.


Svobodova, Z., Krulisova, P., Cerna, M., Jankovicova, B., & Bilkova, Z. (2015). On-chip ELISA on magnetic particles: Isolation and detection of specific antibodies from serum. Nanocon 2015: 7th International Conference, Brno, Czech Republic, EU.


Tang, D., Yuan, R., & Chai, Y. (2007). Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clinical Chemistry, 53(7), 1323–1329.


Tang, H., & Han, D. (2017). Controllable preparation of iron nanostructures and their magnetic properties. Journal of Magnetism and Magnetic Materials, 444, 125–131.


Tsai, H. Y., Hsu, C. F., Chiu, I. W., & Fuh, C. B. (2007). Detection of C-reactive protein based on immunoassay using antibody-conjugated magnetic nanoparticles. Analytical Chemistry, 79(21), 8416–8419.


Tygai, Y. I., & Besarab, A. B. (2014). The mathematical model of voltage transformers for the study of ferroresonant processes. IEEE International Conference on Intelligent Energy and Power Systems, Conference Proceedings, 77–80.


Vesanen, P. T., Nieminen, J. O., Zevenhoven, K. C., Dabek, J., Parkkonen, L. T., Zhdanov, A. V., Luomahaara, J., Hassel, J., Penttilä, J., Simola, J., Ahonen, A. I., Mäkelä, J. P., & Ilmoniemi, R. J. (2013). Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer. Magnetic Resonance in Medicine, 69(6), 1795–1804.


Vidojkovic, S. M., & Rakin, M. P. (2017). Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review. Advances in Colloid and Interface Science, 245, 108–129.


Wacker, R., Ceyhan, B., Alhorn, P., Schueler, D., Lang, C., & Niemeyer, C. M. (2007). Magneto immuno-PCR: A novel immunoassay based on biogenic magnetosome nanoparticles. Biochemical and Biophysical Research Communications, 357(2), 391–396.


Wang, S., Zhang, Y., An, W., Wei, Y., Liu, N., Chen, Y., & Shuang, S. (2015). Magnetic relaxation switch immunosensor for the rapid detection of the foodborne pathogen Salmonella enterica in milk samples. Food Control, 55, 43–48.


Wang, W., Ma, P., Dong, H., Krause, H. J., Zhang, Y., Willbold, D., Offenhaeusser, A., & Gu, Z. (2016). A magnetic nanoparticles relaxation sensor for protein-protein interaction detection at ultra-low magnetic field. Biosensors and Bioelectronics, 80, 661–665.


Wang, T., Zhou, Y., Lei, C., Luo, J., Xie, S., & Pu, H. (2017a). Magnetic impedance biosensor: A review. Biosensors and Bioelectronics, 90, 418–435.


Wang, Y., Zhao, G., Li, X., Liu, L., Cao, W., & Wei, Q. (2017b). Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1. Journal of Biosensors and Bioelectronics, 101, 290–296.


Wu, W., Wu, Z., Yu, T., Jiang, C., & Kim, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16(2), 023501.


Wu, J., Pei, L., Xuan, S., Yan, Q., & Gong, X. (2016). Particle size dependent rheological property in magnetic fluid. Journal of Magnetism and Magnetic Materials, 408, 18–25.


Xu, X., Li, H., Hasan, D., Ruoff, R. S., Wang, A. X., & Fan, D. L. (2013). Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Advanced Functional Materials, 23(35), 4332–4338.


Xu, Z., Jiang, J., Wang, X., Han, K., Ameen, A., Khan, I., Chang, T. W., & Liu, L. (2016). Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale, 8, 6162–6172.


Xue, P., Sun, L., Li, Q., Zhang, L., Guo, J., Xu, Z., & Kang, Y. (2017). PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids and Surfaces B: Biointerfaces, 160, 11–21.


Yang, J., Palla, M., Bosco, F. G., Rindzevicius, T., Alstrøm, T. S., Schmidt, M. S., Boisen, A., Ju, J., & Lin, Q. (2013). Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano, 7(6), 5350–5359.


Zhang, S., Lu, T., Qi, D., Cao, Z., Zhang, Z., & Zhao, H. (2017). Synthesis of quaternized chitosan-coated magnetic nanoparticles for oil-water separation. Materials Letters, 191, 128–131.


Zhu, Y., Kekalo, K., NDong, C., Huang, Y., Shubitidze, F., Griswold, K., Baker, I., & Zhang, J. (2016). Magnetic-nanoparticle-based immunoassays-on-chip: Materials synthesis, surface functionalization, and cancer cell screening. Advanced Functional Materials, 26(22), 3953–3972. 

Published
2017-11-19
How to Cite
Galkin, O. Y., Besarab, O. B., Pysmenna, M. O., Gorshunov, Y. V., & Dugan, O. M. (2017). Modern magnetic immunoassay: Biophysical and biochemical aspects. Regulatory Mechanisms in Biosystems, 9(1), 47-55. https://doi.org/10.15421/021806