Hereditary tubulopathies including the associated bone disease

Keywords: vitamin D resistant rickets; children; hypophosphatemia; genes


Tubulopathy is a heterogeneous group of diseases combined by the nephron functions disorders of one or more enzyme proteins in the tubular epithelium that cease to function as a reabsorption of one or several substances filtered from the blood through the glomeruli into tubules, which determines the development of the disease. This review addresses the tubulopathies accompanying bone disease, namely: de Tony-Debre-Fanconi syndrome (autosomal dominant, autosomal recessive, X-linked), renal distal metabolic acidosis type I (classic, autosomal dominant, autosomal recessive inheritance), renal distal tubular metabolic acidosis I (autosomal dominant, autosomal recessive inheritance) and type II (autosomal recessive inheritance accompanying delayed mental development and eye disorders), combined distal and proximal renal tubular metabolic acidosis type III (autosomal recessive inheritance characterized by osteoporosis), hypophosphatemia rickets (X-linked dominant, autosomal dominant, primary hypercalciuria, autosomal recessive inheritance). However, the diagnosis of tubulopathy remains complex and requires expensive laboratory equipment and specialist expertise; it can be diagnosed in children showing the following symptoms: impaired growth, vitamin D resistant rickets (lower limb deformities between 2 and 3 years of age). In the evaluation of such patients urine analysis is commonly used (levels of calcium, phosphorus, pH, bicarbonate, sodium, potassium, glucose, creatinine, protein, amino acids), blood count (levels of creatinine, uric acid, alkaline phosphatase, glucose, pH and sodium, bicarbonate, potassium, chloride, calcium, phosphorus ions), ultrasound of the kidneys to detect nephrocalcinosis. Determination of serum parathyroid hormone concentration, vitamin D metabolites, aldosterone and plasma renin activity, cysteine lymphocyte concentration (suspicion to diagnose cystinosis) and ophthalmologist examination may also be used as additional diagnostic methods. Despite the fact that most tubulopathies can be diagnosed clinically, molecular genetic studies are needed to clarify the type of inheritance and prognosis. The use of calcitriol will help in the management of phosphorous levels in the blood. Correction of vitamin D deficiency state is not required. Calcitriol supplementation may prevent secondary hyperparathyroidism resulting from increased phosphate intake.


Bacconi, A., Virkki, L. V., Biber, J., Murer, H., & Forster, L. C. (2005). Renouncing electroneutrality is not free of charge: Switching on electroogenicity in a Na+-coupled phosphate cotransporter. Proceedings of the National Academy of Sciences of the USA, 102(35), 12606–12611.

Bai, X., Miao, D., Li, J., Goltzman, D., & Karaplis, A. C. (2004). Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology, 145(11), 5269–5279.

Baroncelli, G. I., Toschi, B., & Bertelloni, S. (2012). Hypophosphatemic rickets. Current Opinion in Endocrinology, Diabetes and Obesity, 19(6), 460–467.

Bastepe, M., & Jüpper, H. (2008). Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Reviews in Endocrine and Metabolic Disorders, 9(2), 171–180.

Ben-Dov, I. Z., Galitzer, H., Lavi-Moshayoff, V., Goetz, R., Kuro-o, M., Mohammadi, M., Sirkis, R., Naveh-Many, T., & Silver, J. (2007). The parathyroid is a target organ for FGF23 in rats. The Journal of Clinical Investigation, 117(12), 4003–4008.

Bergwitz, C., & Jüppner, H. (2010). Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annual Review of Medicine, 61, 91–104.

Bergwitz, C., Roslin, N., Tieder, M., Loredo-Osti, J. C., Bastepe, M., Abu-Zahra, H., Frappier, D., Burkett, K., Carpenter, T. O., Anderson, D., Garabedian, M., Sermet, I., Fujiwara, T. M., Morgan, K., Tenenhouse, H. S., & Juppner, H. (2006). SLC 34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodiummphosphate cotransporter NaP(i) in maintaining phosphate homeostasis. The American Journal of Human Genetics, 78(2), 179–192.

Besouw, M. T. P., Bienias, M., Walsh, P., Kleta, R., Van’t Hoff, W. G., Ashton, E., Jenkins, L., & Bockenhauer, D. (2017). Clinical and molecular aspects of distal renal tubular acidosis in children. Pediatric Nephrology, 32(6), 987–996.

Civitelli, R., & Ziambaras, K. (2011). Calcium and phosphate homeostasis: Concerted interplay of new regulators. Journal of Endocrinological Investigation, 34(7 Suppl), 3–7.

Escobar, L., Mejia, N., Gil, H., & Santos, F. (2013). Distal renal tubular acidosis: A hereditary disease with an inadequate urinary H(+) excretion. Nefrologia, 33(3), 289–296.

Feng, J. Q., Ward, L. M., Liu, S., Lu, Y., Xie, Y., Yuan, B., Yu, X., Rauch, F., Davis, S. I., Zhang, S., Rios, H., Drezner, M. K., Quarles, L. D., Bonewald, L. F., & White, K. E. (2006). Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nature Genetics, 38(11), 1310–1315.

Fry, A. C., & Karet, F. E. (2007). Inherited renal acidoses. Physiology (Bethesda), 22, 202–211.

Gahl, W. A., Thoene, J. G., & Schneider, J. A. (2002). Cystinosis. The New England Journal of Medicine, 347(2), 111–121.

Gambaro, G., Vezzoli, G., Casari, G., Rampoldi, L., D’Angelo, A., & Borghi, L. (2004). Genetics of hypercalciuria and calcium nephrolithiasis: From the rare monogenic to the common polygenic forms. American Journal of Kidney Diseases, 44(6), 963–986.

Gaucher, C., Walrant-Debray, O., Nguyen, T. M., Esterle, L., Garabédian, M., & Jehan, F. (2009). PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Human Genetics, 125(4), 401–411.

Hamilton, A. J., Bingham, C., McDonald, T. J., Cook, P. R. Caswell, R. C., Weedon, M. N., Oram, R. A., Shields, B. M., Shepherd, M., Inward, C. D., Hamilton-Shield, J. P., Kohlhase, J., Ellard, S., & Hattersley, A. T. (2014). The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a beta cell phenotype. Journal of Medical Genetics, 51(3), 165–169.

Karet, F. E. (2002). Inherited distal renal tubular acidosis. Journal of the American Society of Nephrology, 13(8), 2178–2184.

Kartamyisheva, N. N., Vashurina, T. V., Mazo, A. M., Sugak, A. B., Tsyigina, E. N., Bakanov, M. I., & Tsyigin, A. N. (2011). Kanaltsevyie disfunktsii s rahitopodobnyim sindromom [Tubular dysfunction with rickets-like syndrome]. Pediatricheskaya Farmakologiya, 8(4), 140–145 (in Russian).

Klootwijk, E. D., Reichold, M., Helip-Wooley, A., Tolaymat, A., Broeker, C., Robinette, S. L., Reinders, J., Peindl, D., Renner, K., Eberhart, K., Assmann, N., & Oefner, P. J. (2014). Mistargeting of peroxisomal EHHADH and inherited renal Fanconi’s syndrome. The New England Journal of Medicine, 370(2), 129–138.

Krajisnik, T., Björklund, P., Marsell, R., Ljunggren, O., Akerström, G., Jonsson, K. B., Westin, G., & Larsson, T. E. (2007). Fibroblast growth factor-23 regulates parathyroid hormone and 1 alpha-hydroxylase expression in cultured bovine parathyroid cells. Journal of Endocrinology, 195(1), 125–131.

Kraut, J. A., & Madias, N. E. (2010). Metabolic acidosis: Pathophysiology, diagnosis and management. Nature Reviews Nephrology, 6(5), 274–285.

Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., Ohyama, Y., Kurabayashi, M., Kaname, T., Kume, E., Iwasaki, H., Iida, A., Shiraki-Iida, T., Nishikawa, S., Nagai, R., & Nabeshima, Y. I. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 390(6655), 45–51.

Laing, C. M., & Unwin, R. J. (2006). Renal tubular acidosis. Journal of Nephrology, Suppl. 9, 546–552.

Leung, J. C. (2014). Inherited renal diseases. Current Pediatric Reviews, 10(2), 95–100.

Levtchenko, E. N., van Dael, C. M., de Graaf-Hess, A. C., Wilmer, M. J., van den Heuvel, L. P., Monnens, L. A., & Blom, H. J. (2006). Strict cysteamine dose regimen is required to prevent nocturnal cystine accumulation in cystinosis. Pediatric Nephrology, 21(1), 110–113.

Lichter-Konecki, U., Broman, K. W., Blau, E. B., & Konecki, D. S. (2001). Genetic and physical mapping of the locus for autosomal dominant renal Fanconi syndrome, on chromosome 15q15.3. The American Journal of Human Genetics, 68(1), 264–268.

Liu, S., Tang, W., Zhou, J., Stubbs, J. R., Luo, Q. P. M., & Quarles, L. D. (2006). Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. Journal of the American Society of Nephrology, 17(5), 1305–1315.

Lorenz-Depiereux, B., Bastepe, M., Benet-Pages, A., Amyere, M., Wagenstaller, J., Muller-Barth, U., Badenhoop, K., Kaiser, S. M., Rittmaster, R. S., Shlossberg, A. H., Olivares, J. L., Loris, C., Ramos, F. J., Glorieux, F., Vikkula, M., Juppner, H., & Strom, T. M. (2006a). DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nature Genetics, 38(1), 1248–1250.

Lorenz-Depiereux, B., Benet-Pages, A., Eckstein, G., Tenenbaum-Rakover, Y., Wagenstaller, J., Tiosano, D., Gershoni-Baruch, R., Albers, N., Lichtner, P., Schnabel, D., Hochberg, Z., & Strom, T. M. (2006b). Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodiummphosphate cotransporter gene SLC34A3. The American Journal of Human Genetics, 78(2), 193–201.

Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., Hausler, G., & Strom, T. M. (2010). Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. The American Journal of Human Genetics, 86(2), 267–272.

Loymana, E., Tsyigina, A. N., & Sarkisyana, A. A. (ed). (2010). Detskaya nefrologiya: Prakticheskoe rukovodstvo [Pediatric Nephrology: A Practical Guide]. Litterra, Moscow (in Russian).

Magen, D., Berger, L., Coady, M. J., Ilivitzki, A., Militianu, D., Tieder, M., Selig, S., Lapointe, J. Y., Zelikovic, I., & Skorecki, K. (2010). A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. The New England Journal of Medicine, 362 (12), 1102–1109.

Natochin, Y. V. (2008). Klinicheskaya fiziologiya pochek u detey [Clinical kidney physiology in children]. Levsha, Sankt-Peterburg (in Russian).

Nijenhuis, T., Renkema, K. Y., Hoenderop, J. G., & Bindels, R. J. (2006). Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. Journal of the American Society of Nephrology, 17(3), 617–626.

Novikov, P. V., Nedashevskiy, O. V., & Semyachkina, A. N. (2004). Vtorichnyie osteopatii u detey s nasledstvennyimi boleznyami soedinitelnoy tkani i sposoby ih terapevticheskoy korrektsii [Secondary osteopathy in children with hereditary connective tissue diseases and methods of their therapeutic correction]. Yuzhno-Rossiyskiy Meditsinskiy Zhurnal, 2, 42–48 (in Russian).

Perwad, F., & Portale, A. A. (2011). Vitamin D metabolism in the kidney: Regulation by phosphorus and fibroblast growth factor 23. Molecular and Cellular Endocrinology, 347(1–2), 17–24.

Pettifor, J. M. (2008). What’s new in hypophosphataemic rickets? European Journal of Pediatrics, 167(5), 493–499.

Pishak, V. P., Ryznychuk, M. O., & Xmara, T. V. (2015). Anomaliyi sechostatevoyi systemy: Vid teoriyi do praktyky [Anomalies of the urogenital system: From theory to practice]. BDMU, Chernivci (in Ukrainian).

Rodriguez Soriano, J. (2002). Renal tubular acidosis: The clinical entity. Journal of the American Society of Nephrology, 13(8), 2160–2170.

Saito, H., Kusano, K., Kinosaki, M., Ito, H., Hirata, M., Segawa, H., Miyamoto, K., & Fukushima, N. (2003). Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1 alpha,25-dihydroxyvitamin D3 production. Journal of Biological Chemistry, 278(4), 2206–2211.

Savenkova, N. D., & Leviashvili, Z. G. (2004). Diagnostika i lechenie nasledstvennogo sindroma de Toni-Debre-Fankoni [Diagnosis and treatment of the hereditary syndrome de Toni-Debreu-Fanconi]. Nefrologiya, 8(2), 57–65 (in Russian).

Shimada, T., Yamazaki, Y., Takahashi, M., Hasegawa, H., Urakawa, I., Oshima, T., Ono, K., Kakitani, M., Tomizuka, K., Fujita, T., Fukumoto, S., & Yamashita, T. (2005). Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. American Journal of Physiology. Renal Physiology, 289(5), F1088–1095.

Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., Fujita, T., Nakahara, K., Fukumoto, S., & Yamashita, T. (2004a). FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Journal of Bone and Mineral Research, 19(3), 429–435.

Shimada, T., Kakitani, M., Yamazaki, Y., Hasegawa, H., Takeuchi, Y., Fujita, T., Fukumoto, S., Tomizuka, K., & Yamashita, T. (2004b). Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. The Journal of Clinical Investigation, 113(4), 561–568.

Sitara, D., Razzaque, M. S., Hesse, M., Yoganathan, S., Taguchi, T., Erben, R. G., Jüppner, H., & Lanske, B. (2004). Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biology, 23(7), 421–432.

Sun, Y., Wang, O., Xia, W., Jiang, Y., Li, M., Xing, X., Hu, Y., Liu, H., Meng, X., & Zhou, X. (2012). FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets. Journal of Bone and Mineral Metabolism, 30(1), 78–84.

Tasic, V., Korneti, P., Gucev, Z., Hoppe, B., Blau, N., & Cheong, H. I. (2008). Atypical presentation of distal renal tubular acidosis in two siblings. Pediatric Nephrology, 23(7), 1177–1181.

Watanabe, T. (2017). Renal Fanconi syndrome in distal renal tubular acidosis. Pediatric Nephrology, 32(6), 1093.

White, K. E., Cabral, J. M., Davis, S. I., Fishburn, T., Evans, W. E., Ichikawa, S., Fields, J., Yu, X., Shaw, N. J., McLellan, N. J., McKeown, C., Fitzpatrick, D., Yu, K., Ornitz, D. M., & Econs, M. J. (2005). Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. The American Journal of Human Genetics, 76(2), 361–367.

Wöhrle, S., Henninger, C., Bonny, O., Thuery, A., Beluch, N., Hynes, N. E., Guagnano, V., Sellers, W. R., Hofmann, F., Kneissel, M., & Graus Porta, D. (2013). Pharmacological inhibition of fribroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. Journal of Bone and Mineral Metabolism, 28(4), 899–911.

Younes, N. A., Al-Trawneh, I. S., Albesoul, N. M., Hamdan, B. R., & Sroujieh, A. S. (2003). Clinical spectrum of primary hyperparathyroidism. Saudi Medical Journal, 24(2), 179–183.

Zivičnjak, M., Schnabel, D., Billing, H., Staude, H., Filler, G., Querfeld, U., Schumacher, M., Pyper, A., Schröder, C., Brämswig, J., & Haffner, D. (2011). Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatric Nephrology, 26(2), 223–231.


How to Cite
Ryznychuk, M. O., Khmara, T. V., Kryvchanska, M. I., & Zamorskii, I. I. (2018). Hereditary tubulopathies including the associated bone disease. Regulatory Mechanisms in Biosystems, 9(1), 41-46.