Content of chemical elements in the liver of cattle with fasciolosis and dicrocoeliosis

Keywords: microelements; heavy metals; correlation; Fasciola hepatica; Dicrocoelium lanceatum


The concentration of chemical ements (Pb, Cd, Cu, As, Zn, Hg, Fe, Co, Mn) in the liver of healthy cattle and those affected by Fasciola hepatica and Dicrocoelium lanceatum in Poltava region (central part of Ukraine) was determined. The research was carried out by the method of atomic and absorption spectrometry carried out at the Regional State Laboratory of Veterinary Medicine in Poltava region. The liver samples (n = 30) from healthy cattle black-and-white breed and those affected by F. hepatica and D. lanceatum were taken at the meat processing plant. The ages of the cattle ranged from 6 to 8 years. The samples were immediately cooled, transported to the laboratory and stored at –20 °C for further analysis. The results of the research determined the average indicators of concentration of some toxic elements in the livers of healthy cattle and those infected by the trematodes. The content of chemical elements in the liver of healthy animals and those affected by fasciola can be represented in the form of a decreasing rank number: Zn > Fe > Cu, and for dicrocoeliosis, respectively, Fe > Zn > Cu. It has been established that Cu and Zn are involved in the metabolic processes of the body of trematodes, which is confirmed by our research. The presence of F. hepatica and D. lanceatum in the body of cattle significantly reduces the level of copper and zinc, with a high inverse correlation dependence on the intensity of infection, thus indicating the possibility of their accumulation by helminths. Concentration of Cu and Zn in the liver of cattle with fasciolosis was 6.82 ± 0.29 and 35.77 ± 1.93 mg/kg, while for animals with dicrocoeliosis it was 3.90 ± 0.25 and 41.91 ± 2.22 mg/kg. The content of cobalt and manganese in the liver of healthy animals was, respectively, 0.05 ± 0.01 and 1.95 ± 0.06 mg/kg. In the case of Fasciola parasitising in the liver tissue, the level of cobalt (0.10 ± 0.02) and manganese (2.55 ± 0.16) significantly increased, positively correlating with the intensity of the infection, indicating no effect on the exchange and bioaccumulation of these elements by helminths.


Acosta, G. D. A., Сamara, C. N. M., Ongsiako, M. J., Tso, J. N., Flore, J. C., Janairo, I. B., Vi, S. R. C., Flores, R. G., Amalin, D. M., Abes, N. S., & Sumalapao, D. E. P. (2017). Bioaccumulation of cadmium, copper, lead, and zinc in water buffaloes (Bubalus bubalis) infected with liver flukes (Fasciola gigantica). Oriental Journal of Chemistry, 33(4), 1684–1688.

Alzaheb, R. A. & Al-Amer, O. (2017). The prevalence of iron deficiency anemia and its associated risk factors among a sample of female university students in Tabuk, Saudi Arabia. Clinical Medicine Insights: Women’s Health, 10, 1–8.

Bayoumy, E. M., Sanaa, K. A., Abou-El-dobal, & Hassanain, M. A. (2015). Assessment of heavy metal pollution and fish parasites as biological indicators at Arabian Gulf off Dammam Coast. Saudi Arabia International Journal of Zoological Research, 11, 198–206.

Berger, M. M. (2005). Can oxidative damage be treated nutritionally? Clinical Nutrition, 24, 172–183.

Botle, S., Normandin, L., Kennedy, G., & Zayrd, J. (2004). Human exposure to respirable manganese in outdoor and indoor air in urban and rural areas. Journal of Toxicology and Environmental Health, 67, 459–467.

Bowman, A. B., Kwakye, G. F., Hernández, H. E., & Aschner, M. (2011). Role of manganese in neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, 25(4), 191–203.

Brázová, T., Hanzelová, V., Miklisová, D., Šalamúna, P., & Vidal-Martínez, V. M. (2015). Host-parasite relationships as determinants of heavy metal concentrations in perch (Perca fluviatilis) and its intestinal parasite infection. Ecotoxicology and Environmental Safety, 122, 551–556.

Brygadyrenko, V., & Ivanyshyn, V. (2015). Changes in the body mass of Megaphyllum kievense (Diplopoda, Julidae) and the granulometric composition of leaf litter subject to different concentrations of copper. Journal of Forest Science, 61(9), 369–376.

Culha, G., & Sangün, M. K. (2007). Serum levels of zinc, copper, iron, cobalt, magnesium, and selenium elements in children diagnosed with Giardia intestinalis and Enterobiosis vermicularis in Hatay, Turkey. Biological Trace Element Research, 118(1), 21–26.

Datta, B. K., Bhar, M. K., Patra, P. H., Majumdar, D., Dey, R. R., Sarkar, S., Mandal, T. K., & Chakraborty, A. K. (2012). Effect of environmental exposure of arsenic on cattle and poultry in Nadia District, West Bengal, India. Toxicology International, 19(1), 59–62.

Datta, B. K., Mishra, A., Singh, A., Sar, T. K, Sarkar, S., Bhatacharya, A., Chakraborty, A. K., & Mandal, T. K. (2010). Chronic arsenicosis in cattle with special reference to its metabolism in arsenic endemic village of Nadia District West Bengal India. Science of the Total Environment, 409(2), 284–288.

Davydova, S., (2005). Heavy metals as toxicants in big cities. Microchemical Journal, 79(1–2), 133–136.

Dermauw, V., Yisehak, K., Belay, D., Van Hecke, T., Du Laing, G., Duchateau, L., & Janssens, G. P. (2013). Mineral deficiency status of ranging zebu (Bos indicus) cattle around the Gilgel Gibe catchment, Ethiopia. Tropical Animal Health and Production, 45, 1139–1147.

Dermauw, V., Yisehak, K., Dierenfeld, E. S., Laing, D. G., Buyse, J., Wuyts, B., & Janssens, G. P. J. (2013). Effects of trace element supplementation on apparent nutrient digestibility and utilisation in grass-fed zebu (Bos indicus) cattle. Livestock Science, 155, 255–261.

Ekici, K., Agaoglu, S., & Isleyici, O. (2004). Some toxic and trace metals in cattle livers and kidneys. Indian Veterinary Journal, 81, 1284–1285.

Gašparík, J., Vladarova, D., Capcarova, M., Smehyl, P., Slamecka, J., Garaj, P., Stawarz, R., & Massanyi, P. (2010). Concentration of lead, cadmium, mercury and arsenic in leg skeletal muscles of three species of wild birds. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 45(7), 818–823.

Griffiths, L. M., Loeffler, S. H., Sochac, M. T., Tomlinsonc, D. J., & Johnson, A. B. (2007). Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology, 137(1–2), 69–83.

Grosskopf, H. M., Schwertz, C. I., Machado, G., Bottari, N. B., da Silva, E. S., Gabriel, M. E., Lucca, N. J., Alves, M. S., Schetinger, M. R. C., Morsch, V. M., Mendes, R. E., & da Silva, A. S. (2017). Cattle naturally infected by Eurytrema coelomaticum: Relation between adenosine deaminase activity and zinc levels. Research in Veterinary Science, 110, 79–84.

Gutyj, B. V., Mursjka, S. D., Hufrij, D. F., Hariv, I. I., Levkivska, N. D., Nazaruk, N. V., Haydyuk, M. B., Priyma, O. B., Bilyk, O. Y., & Guta, Z. A. (2016). Vplyv kadmiievoho navantazhennia na systemu antyoksydantnoho zakhystu orhanizmu buhaitsiv [Influence of cadmium loading on the state of the antioxidant system in the organism of bulls]. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 96–102 (in Ukrainian).

Hansch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12, 259–266.

Hassan, A. H., Al-Zanbagia, N. A., & Al-Nabati, E. A. (2016). Impact of nematode helminthes on metal concentrations in the muscles of Koshar fish, Epinephelus summana, in Jeddah, Saudi Arabia. The Journal of Basic and Applied Zoology, 74, 56–61.

Ihedioha, J. N., & Okoye, C. O. (2013). Dietary intake and health risk assessment of lead and cadmium via consumption of cow meat for an urban population in Enugu State, Nigeria. Ecotoxicology and Environmental Safety, 93, 101–106.

Il’inskikh, E. N., Novitskii, V. V., Il’inskikh, N. N., & Lepekhin, A. V. (2006). Akkumulyatsiya nekotorykh toksichnykh mikroelementov v tkani pecheni i gelmintakh, poluchennykh ot bolnykh s invaziyey Opisthorchis felineus (Rivolta, 1884) i Metorchis bilis (Braun, 1890) [Accumulation of some toxic microelements in liver tissue and helminths obtained from patients with Opisthorhis felineus (Rivolta, 1884) and Metorchis bilis (Braun, 1890) invasion]. Meditsinskaia Parazitologiia i Parazitarnye Bolezni, 4, 37–40 (in Russian).

Jarzyńska, G., & Falandysz, J. (2011). Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus) – Consequences to human health. Environment International, 37(5), 882–888.

Javed, M., & Usmani, N. (2016). Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. Springerplus, 5(1), 776.

Kabata-Pendias, A. (2004). Soil – plant transfer of trace elements – an environmental issue. Geoderma, 122(2–4), 143–149.

Lazarus, M., Orct, T., Blanuša, M., Vicković, I., & Šoštarić B. (2008). Toxic and essential metal concentrations in four tissues of red deer (Cervus elaphus) from Baranja, Croatia. Food Additives and Contaminants: Part A, 270–283.

Le, T. T., Nachev, M., Grabner, D., Hendriks, A. J., & Sures, B. (2016). Development and validation of a biodynamic model for mechanistically predicting metal accumulation in fish-parasite systems. PLoS One, 11(8) 24–48.

Leite, L. A., Pedro, N. H., Azevedo, R. K., Kinoshita, A., Gennari, R. F., Watanabe, S., & Abdallah, V. D. (2017). Contracaecum sp. Parasitizing Acestrorhynchus lacustris as a bioindicator for metal pollution in the Batalha River, southeast Brazil. Science of the Total Environment, 575, 836–840.

Leskinen, H., Viitala, S., Mutikainen, M., Kairenius, P., Tapio, I., Taponen J., Bernard, L., Vilkki, J., & Shingfield, K. J. (2016). Ruminal infusions of cobalt edta modify milk fatty acid composition via decreases in fatty acid desaturation and altered gene expression in the mammary gland of lactating cows. The Journal of Nutrition, 146(5), 976–985.

Li, Q., Liu, H., Alattar, M., Jiang, S., Han, J., Ma, Y., & Jiang, C. (2015). The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Scientific Reports, 5, 16936.

López Alonso, M., Benedito, J. L., Miranda, M., Castillo, C., Hernández, J., & Shore, R. F. (2002). Cattle as biomonitors of soil arsenic, copper, and zinc concentrations in Galicia (NW Spain). Archives of Environmental Contamination and Toxicology, 43(1), 103–108.

López Alonso, M., Benedito, J. L., Miranda, M., Castillo, C., Hernández, J., & Shore, R. F. (2000). Toxic and trace elements in liver, kidney and meat from cattle slaughtered in Galicia (NW Spain). Food Additives and Contaminants, 17(6), 447–457.

López-Alonso, M., Carbajales, P., Miranda, M., & Pereira, V. (2017). Subcellular distribution of hepatic copper in beef cattle receiving high copper supplementation. Journal of Trace Elements in Medicine and Biology, 42, 111–116.

Lotfollahzadeh, S., Mohri, M., Bahadori, S. R., Dezfouly, M. R., & Tajik, P. (2008). The relationship between normocytic, hypochromic anaemia and iron concentration together with hepatic enzyme activities in cattle infected with Fasciola hepatica. Journal of Helminthology, 82(1), 85–88.

Lotfy, W. M., Mohsen, E. A., & Ali Moustafa, H. A. (2013). Bioaccumulation of some heavy metals in the liver flukes Fasciola hepatica and F. gigantica. Iranian Journal of Parasitology, 8(4), 552–558.

Marijić, F. V., Smrzlić, V. I., & Raspor, B. (2013). Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. Science of the Total Environment, 463–464, 772–780.

Mazhar, R., Shazili, N. A., & Harrison, F. S. (2014). Comparative study of the metal accumulation in Hysterothalycium reliquens (nematode) and Paraphilometroides nemipteri (nematode) as compared with their doubly infected host, Nemipterus peronii (Notched threadfin bream). Parasitology Research, 113(10), 3737–3743.

Minatel, L., & Carfagnini, J. C. (2002). Evaluation of the diagnostic value of plasma copper levels in cattle. Preventive Veterinary Medicine, 53(1–2), 1–5.

Minguez, L., Molloy, D. P., Guérolda, F., & Giambérinia, L. (2011). Zebra mussel (Dreissena polymorpha) parasites: Potentially useful bioindicators of freshwater quality? Water Research, 45(2), 665–673.

Mohammadifard, N., Humphries, K. H., Gotay, C., Mena-Sánchez, G., Salas-Salvadó, J., Esmaillzadeh, A., Ignaszewski, A., & Sarrafzadegan, N. (2017). Trace minerals intake: Risks and benefits for cardiovascular health. Critical Reviews in Food Science and Nutrition, 13, 1–13.

Nachev, M., Schertzinger, G., & Sures, B. (2013). Comparison of the metal accumulation capacity between the acanthocephalan Pomphorhynchus laevis and larval nematodes of the genus Eustrongylides sp. infecting barbel (Barbus barbus). Parasites and Vectors, 6(21), 1–8.

Nachev, M., & Sures, B. (2016). Environmental parasitology: Parasites as accumulation bioindicators in the marine environment. Journal of Sea Research, 113, 45–50.

Nachev, M., & Sures, B. (2016). Seasonal profile of metal accumulation in the acanthocephalan Pomphorhynchus laevis: A valuable tool to study infection dynamics and implications for metal monitoring. Parasites and Vectors, 9(1), 1–9.

Nachev, M., Zimmermann, S., Rigaud, T., & Sures, B. (2010). Is metal accumulation in Pomphorhynchus laevis dependent on parasite sex or infrapopulation size? Parasitology, 137(8), 1239–1248.

Nwude, D. O., Okoye, P. A. C., & Babayemi, J. O. (2011). Assessment of heavy metal concentrations in the liver of cattle at slaughter during three different seasons. Research Journal of Environmental Sciences, 5, 288–294.

Orjales, I., Herrero-Latorre, C., Miranda, M., Rey-Crespo, F., Rodríguez-Bermúdez, R., & López-Alonso, M. (2017). Evaluation of trace element status of organic dairy cattle. Animal, 6, 1–10.

Oymak, T., Ulusoy, H. I., Hastaoglu, E., Yılmaz, V., & Yıldırım, S. (2017). Some heavy metal contents of various slaughtered cattle tissues in Sivas-Turkey. Journal of the Turkish Chemical Society, 4(3), 721–728.

Paßlack (Paslack), N., Mainzer, B., Lahrssen-Wiederholt, M., Schafft, H., Palavinskas, R., Breithaupt, A., Neumann, K., & Zentek, J. (2014). Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys. Springerplus, 3, 343.

Peterson, Е. K., & Schulte, B. A. (2016). Impacts of pollutants on beavers and otters with implications for ecosystem ramifications. Journal of Contemporary Water Research and Education, 157(1), 33–45.

Petukhova, T. V. (2013). Content of heavy metals in the muscle tissue of cattle. In: E3S Web of Conferences, 1, 15002.

Podolska, M., Polak-Juszczak, L., & Nadolna-Ałtyn, K. (2016). Host condition and accumulation of metals by acanthocephalan parasite Echinorhynchus gadi in cod Gadus morhua from the southern Baltic Sea. Marine Pollution Bulletin, 113(1–2), 287–292.

Ramos, P., Santos, A., Pinto, N. R., Mendes, R., Magalhães, T., & Almeida, A. (2014). Anatomical region differences and age-related changes in copper, zinc, and manganese levels in the human brain. Biological Trace Element Research, 161(2), 190–201.

Roggeman, S., de Boeck, G., De Cock, H., Blust, R., & Bervoets, L. (2014). Accumulation and detoxification of metals and arsenic in tissues of cattle (Bos taurus), and the risks for human consumption. Science of the Total Environment, 466–467, 175–184.

Sachko, R. H., Lesyk, Y. V., Luchka, I. V., & Nevostruieva, I. V. (2016). Vmist vazhkykh metaliv u kormakh, orhanizmi tvaryn ta produktsii tvarynnytstva v ahroekolohichnykh umovakh Zakarpattia [Contents of heavy metals in food, organism and animal products in the Zacarpathian biogeochemical province]. Naukovyi Visnyk Lvivskoho Natsionalnoho Universytetu Veterynarnoi Medytsyny ta Biotekhnolohii imeni S. Z. Gzhytskoho. Seriia: Veterynarni nauky, 18(3), 87–90 (in Ukrainian).

Saltyikova, S. A. (2011). Nakoplenie tyazhelyih metallov v ryibah Ladozhskogo ozera i v ih parazitah [Accumulation of heavy metals in fishes of Ladoga lake and their parasites]. Vestnik Kolskogo Nauchnogo Tsentra RAN, 2, 88–93. (in Russian).

Shakir, S. K., Azizullah, A., Murad, W., Daud, M. K., Nabeela, F., Rahman, H., Rehman, U. S., & Häder, D. P. (2017). Toxic metal pollution in Pakistan and its possible risks to public health. Reviews of Environmental Contamination and Toxicology, 242, 1–60.

Shefa, S. T., & Héroux, P. (2017). Both physiology and epidemiology support zero tolerable blood lead levels. Toxicology Letters, 280, 232–237.

Skalny, A. V. (2004). Chemical elements in physiology and ecology of people [Himicheskie elementyi v fiziologii i ekologii cheloveka]. Mir, Moscow (in Russian).

Sokolenko, V. L., & Sokolenko, S. V. (2015). Radionuclide activity and the immune system functioning in residents of radiation contaminated areas. Visnyk of Dnipropetrovsk University. Biology, Medicine, 6(2), 93–96 (in Ukrainian).

Stern, B. R. (2010). Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Journal of Toxicology and Environmental Health, 73(2), 114–127.

Suleyman, Y., Eser, K., Recep, S., & Musret, M. U. A. (2006). Essential elements levels in Fasciola hepatica and Dicrocoelium dendriticum. Indian Veterinary Journal, 12, 1322–1323.

Sures, B. (2004). Environmental parasitology: Relevancy of parasites in monitorring environmental pollution. Trends in Parasitology, 20(4), 170–177.

Sures, B., Jürges, G., & Taraschewski, H. (1998). Relative concentrations of heavy metals in the parasites Ascaris suum (Nematoda) and Fasciola hepatica (Digenea) and their respective porcine and bovine definitive hosts. International Journal for Parasitology, 28(8), 1173–1178.

Sures, B., Nachev, M., Selbach, C., & Marcogliese, D. J. (2017). Parasite responses to pollution: What we know and where we go in ‘Environmental Parasitology’. Parasites and Vectors, 65, 1–19.

Sures, B., Taraschewski, H., & Siddall, R. (1997). Heavy metal concentrations in adult acanthocephalans and cestodes compared to their fish hosts and to established free-living bioindicators. Parasitologia, 39(3), 213–218.

Suttle, N. F. (2010). Mineral nutrition of livestock. 4th Edition. CABI Publishing, Wallingford, Oxfordshire.

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 101, 133–164.

Thielen, F., Zimmermann, S., Baska, F., Taraschewski, H., & Sures, B. (2004). The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environmental Pollution, 129(3), 421–429.

Tsocheva-Gaitandjieva, N. T., Gabrashanska, M. P., & Tepavitcharova, S. (2002). Trace element levels in the liver of rats with acute and chronic fascioliasis and after treatment with zinc-copper hydroxochloride mixed crystals. Journal of Helminthology, 76(1), 87–90.

Unubol Aypak, S., Aypak, S., Voyvoda, H., Güven, G., Fidan, D. E., Tosun, G., Gültekin, M., Şimşek, E., & Güler, G. A. (2016). Comparative analysis of serum mineral levels and parasite load in goats naturally infected with gastrointestinal nematodes. Turkiye Parazitoloji Dergisi, 40(3), 141–146.

Vidal-Martínez, V. M., & Wunderlich, A. C. (2017). Parasites as bioindicators of environmental degradation in Latin America: A meta-analysis. Journal of Helminthology, 91(2), 165–173.

Yarsan, E., Yipel, M., Dikmen, B., Altıntaş, L., Ekici, H., & Köksal, A. (2014). Concentrations of essential and non-essential toxic trace elements in wild boar (Sus scrofa L., 1758) tissues from Southern Turkey. Bulletin of Environmental Contamination and Toxicology, 92(1), 10–14.

Zeng, X., Xu, X., Boezen, H. M., & Huo, X. (2016). Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere, 148, 408–415. 

How to Cite
Kruchynenko, O. V., Prus, M. P., Galat, M. V., Mykhailiutenko, S. M., Klymenko, O. S., & Kuzmenko, L. M. (2018). Content of chemical elements in the liver of cattle with fasciolosis and dicrocoeliosis. Regulatory Mechanisms in Biosystems, 9(1), 15-22.