Post-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystems

Keywords: steppe, fire, algae, cyanoprokaryotes, projective cover, biological soil crust, post-pyrogenic succession


The study of the processes of restoration of species richness and productivity of steppe ecosystems after fires is an urgent problem that affects not only the conservation of biodiversity but also the maintenance of pasture resources. This article presents the results of a study of post-pyrogenic effects in steppe ecosystems, taking into account changes in the species composition of cyanoprokaryotes and algae that are art of the biological soil crust, which performs ecologically important functions in xerophytic ecosystems. The investigations were carried out in virgin and post-pyrogenic steppe ecosystems of the “Troitsk Clough” reserve (Zaporizhia region, Ukraine). For three years, the dynamics of the projective cover and the height of the vegetation cover in virgin areas of herbs-fescue-feather-grass and fescue-feather-grass steppes was studied as well as within two ecosystems of post-pyrogenic development after fires that occurred in the spring and winter periods. We discovered that restoration of the herbs-fescue-feather-grass and fescue-feather-grass steppes after fires occurs at different rates. The cause of the slow restoration of vegetation cover can be its severe damage by fire at the beginning of the vegetation season and the development of erosion processes. The number of species of cyanoprokaryotes and algae in the biological soil crust of virgin and post-pyrogenic ecosystems is not significantly different. It varies from 35 to 49 species. The greatest diversity is noted for Cyanoprokaryota. Chlorophyta is in the second place. Among the dominants, the filamentous forms of Cyanoprokaryota prevail. Nostoc edaphicum was noted as a nitrogen fixing representative. The similarity of the species lists of cyanoprokaryotes and algae of post-pyrogenic and virgin ecosystems, according to the calculated Jaccard coefficient, varies from 49.1% to 55.3%. This indicates a strong specificity of the composition of cyanoprokaryotes and algae in post-pyrogenic biological soil crusts. Changes in their composition reflect different stages of post-pyrogenic succession. In the first year after a fire, there is a slight increase in species richness, which is a consequence of the favorable effect of increasing the amount of mineral substances in the soil after the organic matter has burned out. The “pioneer” group includes: Phormidium autumnale, Ph. dimorphum, Ph. retzii, Ph. (Leptolyngbya) henningsii, Luticola mutica, Hantzschia amphioxys. Gradually this effect is leveled and the species richness of cyanoprokaryotes and algae is stabilized at a level peculiar for this type of ecosystem. 


Allen, E. B., Steers, R. J., & Dickens, S. J. (2011). Impacts of fire and invasive species on desert soil ecology. Rangeland Ecology and Management, 64(5), 450–462.

Baranova, O. O., & Maltseva, I. A. (2009). Gruntovi vodorosti khvostoskhovyshcha ta prylehlykh terytorii na Kryvorizhzhi [Soil algae of tailing dumps and adjacent territories of Kryvbas]. Gruntoznavstvo, 10(3–4), 93–98 (in Ukrainian).

Baranova, O. O., Kvitko, M. O., & Maltseva, I. A. (2009). Alhouhrupovannia stepovykh fitotsenoziv zakaznyka “Balka Pivnichna Chervona” na Kryvorizhzhi [Algae groups of steppe phytocoenoses of reserve “Gorge north red” of Kryvbas]. Visnyk Harkivs’kogo Nacional’nogo Agrarnogo Universytetu. Seriia Biolohiia, 1, 106–110 (in Ukrainian).

Barger, N. N., Herrick, J. E., Van Zee, J., & Belnap, J. (2006). Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry, 77, 247–263.

Belnap, J. (2002). Impacts of off-road vehicles on nitrogen cycles in biological soil crusts: Resistance in different U. S. deserts. Journal of Arid Environments, 52(2), 155–165.

Belnap, J., & Gardner, J. S. (1993). Soil microstructure in soils of the Colorado Plateau: The role of the cyanobacterium Microcoleus vaginatus. The Great Basin Naturalist, 53(1), 40–47.

Bowker, M., Belnap, J., Rosentreter, R., & Graham, B. (2004). Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA. Applied Soil Ecology, 26(1), 41–52.

Buc, J. V. (2012). Pіrogenna relaksіja geosistem [Pyrogenic relaxation of geosystems]. Ljudina ta dovkіllja. Problemi Neoekologіi, 1–2, 71–76 (in Ukrainian).

Chumacheva, N. M. (2001). Strategija vosstanovlenija al’gogruppirovok posle nizovogo pozhara [The starategy of algae groupings remediation after the creeping fire]. Sibirskij Ekologicheskij Zhurnal, 4, 449–454 (in Russian).

Clark, P. E., Williams, C. J., Pierson, F. B., & Hardegree, S. P. (2016). Postfire grazing management effects on mesic sagebrush-steppe vegetation: Spring grazing. Journal of Arid Environments, 132, 49–59.

Cleary, M. B., Pendall, E., & Ewers, B. E. (2010). Aboveground and belowground carbon pools after fire in mountain big sagebrush steppe. Rangeland Ecology and Management, 63(2), 187–196.

Dettweiler-Robinson, E., Bakker, J. D., & Grace, J. B. (2013). Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. Journal of Arid Environments, 94, 96–104.

Escudero, A., Martinez, I., de la Cruz, A., Otalora, M. A. G., & Maestre, F. T. (2007). Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. Journal of Arid Environments, 70, 18–28.

Fonseca, F., Figueire, T., Nogueira, C., & Queiros, A. (2017). Effect of prescribed fire on soil properties and soil erosion in a mediterranean mountain area. Geoderma, 300, 172–180.

Ford, P. L., & Johnson, G. V. (2006). Effects of dormant-vs. growing-season fire in shortgrass steppe: Biological soil crust and perennial grass responses. Journal of Arid Environments, 67(1), 1–14.

Gates, E. A., Vermeire, L. T., Marlow, C. B., & Waterman, R. C. (2017). Fire and season of postfire defoliation effects on biomass, composition, and cover in mixed-grass prairie. Rangeland Ecology and Management, 70(4), 430–436.

Gollerbah, M. M., & Shtina, E. A. (1969). Pochvennyie vodorosli [Soil algae]. Nauka, Leningrad (in Russian).

Havrylenko, V. S. (2011). Systema zapobihannia stepovykh pozhezh, prychyny yikh vynyknennia ta sposoby hasinnia v Biosfernomu zapovidnyku “Askaniia-Nova” [A system of prevention of steppe fires, origin of the fires and methods of fire extinguishing in the biosphere reserve “Askania-Nova”]. Visti Biosfernoho Zapovidnyka Askaniia-Nova, 13, 64–77 (in Ukrainian).

Hu, C. X., Liu, Y. D., Song, L. R., & Zhang, D. L. (2002). Effect of desert soil algae on the stabilization of fine sands. Journal of Applied Phycology, 14(4), 281–292.

Jimenez-Aguilar, A., Huber-Sannwald, E., Belnap, J., Smart, D. R., & Arredondo-Moreno, J. T. (2009). Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability. Journal of Arid Environments, 73(12), 1158–1169.

Kolomiichuk, V. P., Onyshchenko, V. A., & Perehrym, M. M. (2012). Vazhlyvi botanichni terytorii Pryazovia [Important botanical areas of the Azov Sea region]. Alterpres, Kyiv (in Ukrainian).

Kolomiiets, H. V., & Burda, R. I. (2007). Postpirohenni demutatsii ekosystem nadrichkovykh piskiv na Mykolaivshchyni [Post-pyrogenic de-mutation of tributary sands ecosystems in Mykolaiv region]. Naukovyi Visnyk Natsionalnoho Ahrarnoho Universytetu, 117, 34–41 (in Ukrainian).

Kostikov, I. Y., Romanenko, P. O., Demchenko, E. M., Dariyenko, T. M., Myhajlyuk, T. I., Rybchynskyj, O. V., & Solonenko, A. M. (2001). Vodorosti hruntiv Ukrainy: Istoriia ta metody doslidzhen, systema, konspekt flory. Fitosotsiotsentr, Kyiv (in Ukrainian).

Langhans, T. M., Storm, C., & Schwabe, A. (2009). Biological soil crusts and their microenvionment: Impact on emergence, survival and establishment of seedlings. Flora – Morphology, Distribution, Functional Ecology of Plants, 204(2), 157–168.

Langhans, T. M., Storm, C., & Schwabe, A. (2010). Regeneration processes of biological soil crusts, macro-cryptogams and vascular plant species after fine-scale disturbance in a temperate region: Recolonization or successional replacement? Flora – Morphology, Distribution, Functional Ecology of Plants, 205(1), 46–60.

Limb, R. F., Fuhlendorf, S. D., Engle, D. M., & Miller, R. F. (2016). Assessment of research on rangeland fire as a management practice. Rangeland Ecology and Management, 69(6), 415–422.

Liu, W. X., Xu, W. X., Hong, J. P., & Wan, S. Q. (2010). Interannual variability of soil microbial biomass and respiration in responses to topography, annual burning and N addition in a semiarid temperate steppe. Geoderma, 158(3–4), 259–267.

Lysenko, G. M. (2008). Pirogennye aspekty abioticheskoj reguljacii stepnyh rezervatnyh jekosistem [Pyrogenic aspects of the abiotic regulation of steppe reserve ecosystems]. Ekologіja ta Noosferologіja, 19(1–2), 143–147 (in Ukrainian).

Maestre, F. T, Huesca, M., Zaady, E., Bautista, S., & Cortina, J. (2002). Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biology and Biochemistry, 34(6), 895–898.

Malinovskaja, I. M. (2012). Vlijanie pozhara na sostojanie mikrobiocenoza pochvy vos’mi- i dvadcatiletnih zalezhej [Fire influence on the state of microbiocoenosis of eight- and twenty-year deposits soil]. Visnyk Poltavskoi Derzhavnoi Ahrarnoi Akademii, 4, 20–24 (in Russian).

Maltsev, E. Y. (2015). Vlyianye raznkh shtammov roda Nostoc Vaucher ex Bornet et Flahault na rost y razvytye Pisum sativum L. [Influense of Nostoc Vaucher ex Bornet et Flahault strains on growth and development of Pisum sativum L.]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 5(3), 148–154.

Maltsev, Y. I., Didovich, S. V., & Maltseva, I. A. (2017). Seasonal changes in the communities of microorganisms and algae in the litters of tree plantations in the Steppe zone. Eurasian Soil Science, 50(8), 935–942.

Maltseva, I. A. (2003). Gruntovi vodorosti yak strukturnyi element Velyko-Anadolskoho kulturbioheotsenozu [Soil algae as a structural element of Velyko-Anadol culture biogeocoenosis]. Gruntoznavstvo, 4(1–2), 66–72 (in Ukrainian).

Maltseva, I. A., & Pysanets, Z. H. (2004). Gruntova alhoflora lisovykh i stepovykh fitotsenoziv na terytorii Mariupolskoi doslidnoi stantsii [Soil algae flora of forest and steppe phytocoenoses on the territory of Mariupol research station]. Visnyk Zaporizkoho Derzhavnoho Universytetu, 1, 132–135 (in Ukrainian).

Maltseva, I. A., & Shcherbyna, V. V. (2011). Sezonna dynamika chyselnosti ta biomasy vodorostei deiakykh bioheotsenoziv stepovoi zony pivdnia Ukrainy [The seasonal dynamics of algae population and biomass of some biogeocenosis of a steppe zone in the southern Ukraine]. Visti Biosfernoho Zapovidnyka Askaniia-Nova, 13, 97–100 (in Ukrainian).

Maltseva, I. A., Maltsev, E. I., & Solonenko, A. N. (2017). Vodorosli pochv dubrav stepnoy zonyi Ukrainyi [Algae of the soils of Ukrainian steppe zone groves]. Аlgologia, 27(3), 323–336 (in Russian).

Miller, R. F., Naugle, D. E., Maestas, J. D., Hagen, C. A., & Halle, G. (2016). Special issue: targeted woodland removal to recover At-Risk Grouse and their Sagebrush-Steppe and prairie ecosystems. Rangeland Ecology and Management, 70(1), 1–8.

Mordkovich, V. G., Ljubechanskij, I. I., & Berezina, O. G. (2007). Problema pozharov i pirogennyh sukcessij soobshhestv pochvennyh chlenistonogih v Sibiri [Forest fire problem and pyrogenic successions of the communities of soil arthopoda in Siberia]. Sibirskij Ekologicheskij Zhurnal, 14(2), 169–181 (in Russian).

Morhun, Y. M. (2010). Osoblyvosti postpirohennoi transformatsii murashnykiv u zapovidnomu stepu Askania-Nova [The peculiarities of postpyrogenic transformation of anthills in the protected steppe Askania-Nova]. Visti Biosfernoho Zapovidnyka Askaniia-Nova, 12, 97–99 (in Ukrainian).

Myers, P. E., & Davis, J. S. (2003). Recolonization of soils by algae in a north central Florida pine forest after controlled fire and soil sterilization. Nova Hedwigia, 76(1–2), 207–219.

Pivovarova, Z. F., & Chumacheva, N. M. (2004). Osobennosti raspredelenija pochvennyh vodoroslej na uchastkah kostrishh [The peculiarities of soil algae distribution on the areas of fireplaces]. Sibirskij Ekologicheskij Zhurnal, 4, 419–422 (in Russian).

Qi, F., Naidu, R., Bolan, N., Dong, Z., Yan, Y., Lamb, D., Bucheli, T., Choppala, G., Duan, L., & Semple, K. (2017). Pyrogenic carbon in Australian soils. Science of the Total Environment, 586, 849–857.

Rau, B. M., Chambers, J. C., Pyke, D. A., Roundy, B. A., Schupp, E. W., Doescher, P., & Caldwell, T. G. (2014). Soil resources influence vegetation and response to fire and fire and fire-surrogate treatments in sagebrush-steppe ecosystems. Rangeland Ecology and Management, 67(5), 506–521.

Reed-Dustin, C. M., Mata-Gonzalez, R., & Rodhouse, T. J. (2016). Long-term fire effect on native and invasive grasses in protected area sagebrush steppe. Rangeland Ecology and Management, 69(4), 257–264.

Savadogo, P. D., Diawara, S., Dayamba, S. D., Sawadogo, L., & Nacro, H. B. (2017). Limited long-term effects of moderate livestock grazing and prescribed early fire on soil and root processes in Sudanian savanna-woodlands, West Africa. Geoderma, 306, 18–27.

Scheintaub, M. R., Derner, J. D., Kelly, E. F., & Knapp, A. K. (2009). Response of the shortgrass steppe plant community to fire. Journal of Arid Environments, 73(12), 1136–1143.

Scherbina, V. V., Maltseva, I. A., & Solonenko, A. N. (2014). Peculiarities of postpyrogene development of algae in steppe biocenoses at Askania Nova National Park. Contemporary Problems of Ecology, 7(2), 187–191.

Shcherbyna, V. V. (2014). Sezonna fluktuatsiia bioiriznomanittia alhouhrupovan tsilynnykh ta antropohenno-porushenykh bioheotsenoziv Pivdennoho stepu Ukrainy [Seasonal fluctuations of algae community biodiversiti of virgin and anthropogenic-broken biogeocenosis south steppe of Ukraine]. Jekosistemy ih Optimizacija i Ohrana, 11(30), 165–167 (in Ukrainian).

Shcherbyna, V. V. (2015). Strukturno-funktsionalni kharakterystyky alhouhrupovannia tsilynnoho typchakovo-kovylovoho stepu Biosfernoho zapovidnyka Askaniia-Nova [Structural-functional descriptions of algae associations of virgin steppe of biosphere reserve of Askaniya-Nova]. Zapovidna Sprava, 21(1), 33–39 (in Ukrainian).

Shekhovtseva, O. G., & Maltseva, I. A. (2015). Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine. Eurasian Soil Science, 48(12), 1393–1400.

Strong, D. J., Vermeire, L. T., & Ganguli, A. C. (2013). Fire and nitrogen effects on purple threeawn (Aristida purpurea) abundance in northern mixed-grass prairie old fields. Rangeland Ecology and Management, 66(5), 553–560.

Tooth, I. M., & Leishman, M. R. (2013). Post-fire resprouting responses of native and exotic grasses from Cumberland Plain Woodland (Sydney, Australia) under elevated carbon dioxide. Austral Ecology, 38(1), 1–10.

Vermeire, L. T., Crowder, J. L., & Wester, D. B. (2011). Plant community and soil environment response to summer fire in the nother great plains. Rangeland Ecology and Management, 64(1), 37–46.

Zhang, Y. M., Wang, H. L., Wang, X. Q., Yang, W. K., Zhang, D. Y. (2006). The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma, 132(3–4), 441–449.

How to Cite
Shcherbyna, V. V., Maltseva, I. A., Maltsev, Y. I., & Solonenko, A. N. (2017). Post-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystems. Regulatory Mechanisms in Biosystems, 8(4), 633–638.