The arginase pathway of L-arginine metabolism of peripheral blood lymphocytes in patients with acne vulgaris

  • G. S. Lavryk Danylo Halytskyi Lviv National Medical University Department of Microbiology http://orcid.org/0000-0002-6470-1653
  • O. P. Korniychuk Danylo Halytskyi Lviv National Medical University Department of Microbiology
  • A. S. Besedina Danylo Halytskyi Lviv National Medical University Department of Microbiology
  • Z. D. Vorobets Danylo Halytskyi Lviv National Medical University Department of Microbiology
Keywords: acne, arginase, Staphylococcus aureus, Staphylococcus epidermidis

Abstract

The mechanisms of development of the inflammatory process of the pilosebaceous apparatus in patients with acnе vulgaris are not fully understood, and variations in bacterial colonization are one of the key elements of the inflammatory process. Under the pathological conditions caused by pus-forming cocci which induce the production of proinflammatory cytokines, there is an increase in arginase expression. The capacity for film formation in selected strains was determined by the cultural properties (increased viscosity of the colony biomass) and by differential interference contrast microscopy using a dark field condenser and fluorescence microscopy. Arginase activity (μmole urea/min•mg of protein) was determined spectrophotometrically at 520 nm on saponin-perimabilized lymphocytes of peripheral blood by the rate of urea formation. The cultures of film-forming and planktonic forms of Staphylococcus epidermidis and Staphylococcus aureus were isolated from purulent pustules of 44 patients, aged 18–30. 63.6% of clinical strains of film-forming staphylococci were isolated, out of which 15 strains (53.6%) were S. aureus and 13 strains (46.4%) S. epidermidias. It was found that the arginase activity in patients (film-forming S. aureus) was significantly higher than in practically healthy donors (control) and was equal to 0.262 ± 0.006 and 0.279 ± 0.005 (planktonic form of S. aureus) versus 0.087 ± 0.009 μmole urea / min∙mg of protein in the control. The arginase activity in patients (film-forming S. epidermidis) was significantly higher than in practically healthy donors and was equal to 0.281 ± 0.009 and 0.297 ± 0.006 (planktonic form of S. epidermidis) versus 0.087 ± 0.009 μmol urea / min∙mg of protein in the control. After the auto-vaccine therapy and the administration of the probiotic Lacidofil (Institut Rosell Inc., Canada), enzyme activity decreased significantly in both experiments, however it had not attained control levels. The enzyme activity decreased through the administration of a vaccine, which in turn has an immunomodulating and immunostimulating effect. In addition, comparing the data of the arginase activity after treatment in patients with S. epidermidis, there was a slight decrease in the enzyme activity. This result is probably due to the formed tolerance of the immune system to commensal microorganisms. It was found that all patients had a moderate dysbiosis, which was accompanied by a deficiency of the main normal symbionts of the intestine. After treatment, all patients experienced significant improvementst in the microbiocenosis of the intestine in the direction of normalization of parameters and improvement of the skin condition. Increase in arginase activity in patients with acne vulgaris indicates the competition of this enzyme with NO-synthases for the substrate L-arginine and the alteration of physiological reactions in the organism caused by staphylococci which induce the phagocytic response and the cytokines production of the humoral system.

References

Allen, H. B., Vaze, N. D., Choi, C., Hailu, T., Tulbert, B. H., Cusack, C. A., & Joshi, S. G. (2014). The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatology, 150(3), 260–265.

Averina, V. I, & Salamova, I. V. (2014). Sovremennyj podhod k terapii vozrastnogo akne u zhenshhin [Modern approach to the treatment of age-related acne in women]. Medicinskij Sovet, 7, 62–67 (in Russian).

Barksdale, A. R., Bernard, A. C., Maley, M. E., Gellin, G. L., Kearney, P. A., Boulanger, B. R., Tsuei, B. J., & Ochoa, J. B. (2004). Regulation of arginase expression by T-helper II cytokines and isoproterenol. Surgery, 135(5), 527–535.

Barratt, H., Hamilton, F., Car, J., Lyons, C., Layton, A., & Majeed, A. (2009). Outcome measures in acne vulgaris: Systematic review. British Journal of Dermatology,160(1), 132–136.

Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141.

Benyacoub, J., Bosco, N., Blanchard, C., Demont, A., Philippe, D., Castiel-Higounenc, I., & Guéniche, A. (2013). Immune modulation property of Lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defences. Beneficial Microbes, 5(2), 129–136.

Birger, M. I. (Ed.). (1982). Spravochnik po mikrobiologicheskim i virusologicheskim metodam issledovanija (Handbook on microbiological and virological research methods). Medicine, Moscow (in Russian).

Bojar, R. A., & Holland, K. T. (2004). Acne and Propionibacterium acnes. Clinics in Dermatology, 22(5), 375–379.

Bowe, W. P. (2013). Probiotics in acne and rosacea. Cutis, 92(1), 6.

Buchinska, L. G., Nesina, I. P., Tkachenko, N. I., & Polischuk, L. Z. (2002). Osoblyvosti jaderec’ limfocytiv peryferychnoi’ krovi hvoryh na rak tila matky [Peculiarities of peripheral blood lymphocyte nucleoli in patients with corpus uteri cancer]. Onkologija, 4(1), 18–20 (in Ukrainian).

Burceva, G. N., Sergeev, A. Y., Arzumanyan, V. G., & Sergeev, Y. Y. (2013). Perifollikuljarnaja mikrobiota kozhi pri akne. Chast’ I. Obshhie harakteristiki kolonizacii i rezistentnost’ k sistemnym antibiotikam. [Perifollicular cutaneous microbiota in acne patients. Part I. Common patterns of colonization and resistance to systemic antimicrobials]. Immunopatologija, Allergologija, Infektologija, 2, 84–87 (in Russian).

Cazzola, M., Tompkins, T. A., & Matera, M. G. (2010). Immunomodulatory impact of a synbiotic in Th1 and Th2 models of infection. Therapeutic Advances in Respiratory Disease, 4(5), 259–270.

Clark, A. K., Haas, K. N., & Sivamani, R. K. (2017). Edible plants and their influence on the gut microbiome and acne. International Journal of Molecular Sciences, 18(5), 1070.

Coates, R., Moran, J., & Horsburgh, M. J. (2014). Staphylococci: Colonizers and pathogens of human skin. Future Microbiology, 9(1), 75–91.

Collier, C. N., Harper, J. C., Cantrell, W. C., Wang, W., Foster, K. W., & Elewski, B. E. (2008). The prevalence of acne in adults 20 years and older. Journal of the American Academy of Dermatology, 58(1), 56–59.

Das, P., Lahiri, A., Lahiri, A., & Chakravortty, D. (2010). Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathogens, 6(6), e1000899.

Diep, B. A., Gill, S. R., Chang, R. F., Phan, T. H., Chen, J. H., Davidson, M. G., Lin, F., Lin, J., Carleton, H. A., Mongodin, E. F., Sensabaugh, G. F., & Perdreau-Remington, F. (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. The Lancet, 367(9512), 731–739.

Do, T. T., Zarkhin, S., Orringer, J. S., Nemeth, S., Hamilton, T., Sachs, D., Voorhees, J. J., & Kang, S. (2008). Computer-assisted alignment and tracking of acne lesions indicate that most inflammatory lesions arise from comedones and de novo. Journal of the American Academy of Dermatology, 58(4), 603–608.

Dreno, B., Martin, R., Moyal, D., Henley, J. B., Khammari, A., & Seité, S. (2017). Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne. Experimental Dermatology, 26(9), 798–803.

Dumont-Wallon, G., & Dréno, B. (2008). Specificity of acne in women older than 25 years. Presse Medicale (Paris, France: 1983), 37(4Pt1), 585–591.

Goryachkina, M. V., & Belousova, T. A. (2014). Kombinirovannaja terapija akne u zhenshhin: Poisk optimal’nyh reshenij [Combination therapy of acne in women: Searching for optimum solutions]. Vestnik Dermatologii i Venerologii, 2, 90–95 (in Russian).

Grasemann, H., Schwiertz, R., Matthiesen, S., Racké, K., & Ratjen, F. (2005). Increased arginase activity in cystic fibrosis airways. American Journal of Respiratory and Critical care Medicine, 172(12), 1523–1528.

Grice, E. A., & Segre, J. A. (2012). Interaction of the microbiome with the innate immune response in chronic wounds. In: Current topics in innate immunity Vol. II. Springer, New York. pp. 55–68.

Guéniche, A., Bastien, P., Ovigne, J. M., Kermici, M., Courchay, G., Chevalier, V., Breton, L., & Castiel-Higounenc, I. (2010). Bifidobacterium longum lysate, a new ingredient for reactive skin. Experimental Dermatology, 19(8), e1–e8.

Hacini-Rachinel, F., Gheit, H., Le Luduec, J. B., Dif, F., Nancey, S., & Kaiserlian, D. (2009). Oral probiotic control skin inflammation by acting on both effector and regulatory T cells. PLoS One, 4(3), e4903.

Hassanzadeh, P., Bahmani, M., & Mehrabani, D. (2008). Bacterial resistance to antibiotics in acne vulgaris: An in vitro study. Indian Journal of Dermatology, 53(3), 122.

Hawley, R., & Hawley, T. (2004). Flow cytometry protocols. Methods in Molecular Biology, 263, 34–37.

Holán, V., Pindjáková, J., Krulová, M., Neuwirth, A., Fric, J., & Zajícová, A. (2006). Production of nitric oxide during graft rejection is regulated by the Th1/Th2 balance, the arginase activity, and L-arginine metabolism. Transplantation, 81(12), 1708–1715.

Iinuma, K., Sato, T., Akimoto, N., Noguchi, N., Sasatsu, M., Nishijima, S., Kurokawa, I., & Ito, A. (2009). Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro. Journal of Investigative Dermatology, 129(9), 2113–2119.

Jappe, U., Ingham, E., Henwood, J., & Holland, K. T. (2002). Propionibacterium acnes and inflammation in acne; P. acnes has T-cell mitogenic activity. British Journal of Dermatology, 146(2), 202–209.

Jung, G. W., Tse, J. E., Guiha, I., & Rao, J. (2013). Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. Journal of Cutaneous Medicine and Surgery, 17(2), 114–122.

Kalyujna, L. D., Grechanska, L. V., & Petrenko, A. V. (2014). Rol’ rozsmoktuvalnoi terapii v likuvanni hvoryh na acne [The role of resorptive therapy for treatment of acne patients]. Klinichna Imunologiya. Alergologiya. Infektologiya, (8), 41–44 (in Ukrainian).

Kang, S. S., Kauls, L. S., & Gaspari, A. A. (2006). Toll-like receptors: Applications to dermatologic disease. Journal of the American Academy of Dermatology, 54(6), 951–983.

Klasen, S., Hammermann, R., Fuhrmann, M., Lindemann, D., Beck, K. F., Pfeilschifter, J., & Racké, K. (2001). Glucocorticoids inhibit lipopolysaccharide-induced up-regulation of arginase in rat alveolar macrophages. British Journal of Pharmacology, 132(6), 1349–1357.

Korolenko, V. V. (2016). Perspektyvni imunni mehanizmy likuvannja pacijentiv z akne [Perspective immune mechanisms of treatment of patients with acne]. Ukrainian Journal of Dermatology, Venereology, Cosmetology, 4, 79–81 (in Ukrainian).

Krysko, D. V., Berghe, T. V., Parthoens, E., D’Herde, K., & Vandenabeele, P. (2008). Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods in Enzymology, 442, 307–341.

Lai, Y., & Gallo, R. L. (2008). Toll-like receptors in skin infections and inflammatory diseases. Infectious Disorders-Drug Targets, 8(3), 144–155.

Lavryk, G., Korniychuk, O., & Tymkiv, M. (2017). Ultrastructural changes in biofilm forms of staphylococci cultivated in a mixed culture with lactobacilli. Regulatory Mechanisms in Biosystems, 8(1), 98–103.

Lugovskoy, S. P. (2002). Zminy aktyvnosti fermentnogo spektra limfocytiv peryferijnoi’ krovi pry svyncevij intoksykacii’ (cytohimichne doslidzhennja) [Changes in the activity of the enzyme spectrum of peripheral blood lymphocytes upon lead intoxication (cytochemical study)]. Laboratorna Diagnostyka, (2), 29–32 (in Ukrainian).

Mempel, M., Voelcker, V., Köllisch, G., Plank, C., Rad, R., Gerhard, M., Schnopp, C., Fraunberger, P., Walli, A. K., Ring, J., Abeck, D., & Ollert, M. (2003). Toll-like receptor expression in human keratinocytes: Nuclear factor κB controlled gene activation by Staphylococcus aureus is Toll-like receptor 2 but not Toll-like receptor 4 or platelet activating factor receptor dependent. Journal of Investigative Dermatology, 121(6), 1389–1396.

Miller, L. S. (2008). Toll-like receptors in skin. Advances in Dermatology, 24, 71–87.

Miragaia, M., de Lencastre, H., Perdreau-Remington, F., Chambers, H. F., Higashi, J., Sullam, P. M., Lin, J., Wong, K. I., King, K. A., Otto, M., Sensabaugh, G. F., & Diep, B. A. (2009). Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. PloS One, 4(11), e7722.

Monakhov, S. A., & Ivanov, O. L. (2012). Akne. Etiopatogenez, klinika, terapiya [Acne. Etiopatogenez, clinic, therapy]. Bayer HealthCare, Moscow (in Russian).

Munder, M., Mollinedo, F., Calafat, J., Canchado, J., Gil-Lamaignere, C., Fuentes, J. M., & Müller, F. M. (2005). Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 105(6), 2549–2556.

Myadelets, O. D., & Adaskevich, V. P. (2006). Morfofunktcionalnaja dermatology [Morpho-functional dermatology]. Medicinskaja Literatura, Moscow (in Russian).

Nagao, K., & Segre, J. A. (2015). “Bringing up baby” to tolerate germs. Immunity, 43(5), 842–844.

Nakamura, Y., Oscherwitz, J., Cease, K. B., Chan, S. M., Muсoz-Planill, R., Hasegawa, M., Villaruz, A. E., Cheung, G.-Y. C., McGavin, M. J., Travers, J. B., Otto, M., Inohara, N., & Núñez, G. (2013). Staphylococcus (dgr)-toxin induces allergic skin disease by activating mast cells. Nature, 503(7476), 397–401.

Numata, S., Akamatsu, H., Akaza, N., Yagami, A., Nakata, S., & Matsunaga, K. (2014). Analysis of facial skin-resident microbiota in Japanese acne patients. Dermatology, 228(1), 86–92.

Ochoa, A. C., Zea, A. H., Hernandez, C., & Rodriguez, P. C. (2007). Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clinical Cancer Research, 13(2), 721s–726s.

Otto, M. (2009). Staphylococcus epidermidis – the accidental pathogen. Nature Reviews Microbiology, 7(8), 555–567.

Otto, M. (2010). Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annual Review of Microbiology, 64, 143–162.

Peral, M. C., Huaman Martinez, M. A., & Valdez, J. C. (2009). Bacteriotherapy with Lactobacillus plantarum in burns. International Wound Journal, 6(1), 73–81.

Peral, M. C., Rachid, M. M., Gobbato, N. M., Martinez, M. H., & Valdez, J. C. (2010). Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with Lactobacillus plantarum. Clinical Microbiology and Infection, 16(3), 281–286.

Peretiatko, Y. V., & Sybirna, N. O. (2009). Osoblyvosti arginaznogo ta NO-syntaznogo shljahiv metabolizmu L-argininu v lejkocytah peryferychnoi’ krovi shhuriv za hronichnogo rentgenivs’kogo oprominennja [Particularities of arginase and NO-synthase pathways of L-arginine conversion in the leucocytes of peripheral blood under the X-ray radiation]. Ukrai’ns’kyj Biohimichnyj Zhurnal, 81(2), 40–48 (in Ukrainian).

Prince, T., McBain, A. J., & O’Neill, C. A. (2012). Lactobacillus reuteri protects epidermal keratinocytes from Staphylococcus aureus-induced cell death by competitive exclusion. Applied and Environmental Microbiology, 78(15), 5119–5126.

Protsenko, T. V., Protsenko, O. A., Buturlinova, A. S., & Lukyanchenko, E. N. (2015). Innovacionnye aspekty v patogeneze i terapii akne [Innovative aspects in the pathogenesis and therapy of acne]. Ukrainian Journal of Dermatology, Venereology, Cosmetology, (4), 79–81 (in Ukrainian).

Sanford, J. A., & Gallo, R. L. (2013). Functions of the skin microbiota in health and disease. Seminars in Immunology, 25(5), 370–377.

Scharschmidt, T. C., & Fischbach, M. A. (2013). What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discovery Today: Disease Mechanisms, 10(3), e83–e89.

Schlegel, K., & Füllekrug, M. (2002). 50 years of schumann resonance. Physik in Unserer Zeit, 33(6), 256–264.

Sorokina, E. V. (2012). Toll-podobnye receptory i pervichnoe raspoznavanie patogena pri dermatozah infekcionnoj i neinfekcionnoj jetiologii [Toll-like receptors and primary pathogen recognition in infectious and non-infectious cutaneous pathology]. Immunopatologija, Allergologija, Infektologija, 2, 6–15 (in Russian).

Valdez, J. C., Peral, M. C., Rachid, M., Santana, M., & Perdigon, G. (2005). Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: The potential use of probiotics in wound treatment. Clinical Microbiology and Infection, 11(6), 472–479.

Valins, W., Amini, S., & Berman, B. (2010). The expression of Toll-like receptors in dermatological diseases and the therapeutic effect of current and newer topical Toll-like receptor modulators. The Journal of Clinical and Aesthetic Dermatology, 3(9), 20–29.

Volkova, L. A., Khalifа, I. L., & Kabanova, I. N. (2001). Impact of the impaired intestinal microflora on the course of acne vulgaris. Klinicheskaia Meditsina, 79(6), 39–41.

Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H., & Whitman, W. (Eds.). (2009). Bergey’s Manual of Systematic Bacteriology. Vol. 3: The Firmicutes. Springer.

Williams, H. C., Dellavalle, R. P., & Garner, S. (2012). Acne vulgaris. The Lancet, 379(9813), 361–372.

Yakubets, O. I., Fafula, R. V., Vorobets, D. Z., & Vorobets, Z. D. (2013). Osoblyvosti arginaznogo ta NO-syntaznogo shljahiv metabolizmu L-argininu v limfocytah peryferychnoi’ krovi hvoryh na rak jajechnyka [Peculiarities of arginase and no-synthase pathways of l-arginine metabolism in peripheral blood lymphocytes of patients with ovarian cancer]. Ukrai’ns’kyj Biohimichnyj Zhurnal, 85(5), 105–113 (in Ukrainian).

Yoshimoto, T., Takeda, K., Tanaka, T., Ohkusu, K., Kashiwamura, S. I., Okamura, H., Akira, S., & Nakanishi, K. (1998). IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: Synergism with IL-18 for IFN-γ production. The Journal of Immunology, 161(7), 3400–3407.

Zouboulis, C. C. (2009). Propionibacterium acnes and sebaceous lipogenesis: A love-hate relationship? Journal of Investigative Dermatology, 129(9), 2093–2096.

Published
2017-11-20
How to Cite
Lavryk, G. S., Korniychuk, O. P., Besedina, A. S., & Vorobets, Z. D. (2017). The arginase pathway of L-arginine metabolism of peripheral blood lymphocytes in patients with acne vulgaris. Regulatory Mechanisms in Biosystems, 8(4), 596–601. https://doi.org/10.15421/021791