Biochemical markers of safety of nano-particles of metals on the model of isolated subcultural fractions of eukaryotes

Keywords: nanoparticles of metals, membrane ATPase, cytosolic LDHase, safety, biocompatibility, eukaryotic cell


Unique sizes and a high level of bioavailability allow nanoparticles of metals (NPMe) to come into direct contact with biological systems, with infectious agents, toxins, as well as with different chemical compounds and separate cell structures (proteins, lipids, nucleic acids). Other biological effects, including less toxicity than in microscopic substances, require attention to be paid to the study of the potential risk of using nanoparticles of each type in a particular way, therefore scientific support is absolutely necessary in this direction. It is believed that the cytotoxicity of nanomaterials is due to genomic and mutagenic effects, but the mechanical forces of interaction of NPMе with cells, obviously, will change not only cytological but also their metabolic reactions. Therefore, the purpose of this research was to determine the biochemical markers of safety (potential toxicity) of NPMe (Au, Ag, Cu, Fe, Co, GFCo, Zn, MnO2) on the model of isolated membrane and cytosolic fractions of eukaryotic test cells of CHO-K1 and U937 lines. Under conditions of preincubation of experimental samples of NPMe at a final concentration of 1 μg/cm3 by the metal with preparations of subcellular fractions of CHO-K1 and U937 (in the final amount of protein 150–200 μg/cm3) for 3 minutes at 37 ± 1 ºС, there was determined the magnitude of membrane ATP-ase and cytosolic LDH-ase activity compared to intact cells ("control"). According to the results of the research, colloidal dispersions of NPAg average size ~30 nm, NPFe ~100 nm, NPCu ~70 nm, and NPMnO2 ~50 nm are safe and biocompatible by their membranotropic effect on subcellular fractions of eukaryotic test cells, as evidenced by an increase in the level of membrane ATPase and cytosolic LDHase of test-cells CHO-K1, and the experimental samples NPCo, NPGFCo and NPZn average size of ~100 nm are membrane-toxic, that is, dangerous. By the nature of the changes in the enzymatic activity of the test cells U937, the discrete dimensions of the membranotropic action of NPAu have been demonstrated: nanoparticles of size ~10 nm caused the inhibition of the membrane Na+,K+-ATPase, and the size of ~30 nm and ~45 nm – its induction; nanoparticles of size ~10, ~20 and ~30 nm induced cytosolic LDHase and the size of ~45 nm – its inhibition relative to the control level of enzymes, so NPAu ~10 and ~45 nm can be considered membrane toxic, and size ~30 nm – safe and biocompatible for eukaryotic cells. Based on the hypothesis about the involvement of metabolism-dependent mechanisms of contact interaction of colloidal dispersions of experimental samples of NPMe with cells through membranotropic properties, the study of their potential danger or biocompatibility in further research can be carried out by determining the intensity of oxidation of the main structural components of biomembranes of cells – lipids and proteins and indicators of their AO-regulation. 


Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., Dormann, E., & Schnettler, R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18), 4383–4391.

Artjuhov, V. G., & Nakvasina, M. A. (2000). Biologicheskie membrany: Strukturnaja organizacija, funkcii, modifikacija fiziko-himicheskimi agentami [Biological membranes: Structural organization, functions, modification to physicochemical agents]. Izdatel’stvo Voronezhskogo Universiteta, Voronezh (in Russian).

Basnak’jan, I. A., Borovkova, V. M., & Kuz’min, S. I. (1981). Patologija i fiziologija mikrobov [Pathology and physiology of microbes]. Zhurnal Mikrobiologii, Jepidemiologii i Immunobiologii, 9, 14–19 (in Russian).

Borysevych, V. B., & Borysevych, B. V. (2010). Antibacterial properties and chemotherapeutic activity of nanoacquachelates of metals [Antybakterialni vlastyvosti ta khimioterapevtychna aktyvnist nanoakvakhelativ metaliv]. In: Borysevych, V. B., & Kaplunenko, V. H. (Eds.). Nanomaterials in biology. Basic nanoveterinary [Nanomaterialy v biolohii. Osnovy nanoveterynarii]. Avitsena, Kyiv. pp. 27–33 (in Ukrainian).

Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A., & Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environmental Science and Technology, 40(14), 4374–4381.

Cardinal, J., Klune, J. R., Chory, E., Jeyabalan, G., Kanzius, J. S., Nalesnik, M., & Geller, D. A. (2008). Non-invasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery, 144(2), 125–132.

Chen, P. C., Mwakwari, S. C., & Oyelere, A. K. (2008). Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnology, Science and Applications, 1, 45–65.

Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B., & Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2), 109–120.

Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J., & Wyatt, M. D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1(3), 325–327.

Danylovych, G. V., Gruzina, T. G., Ulberg, Z. R., & Kosterin, S. O. (2007). Vplyv ionnoho ta koloidnoho zolota na ATR-hidrolazni fermentni systemy v membrani mikroorhanizmiv Bacillus sp. B4253 ta Bacillus sp. V4851 [Effect of ionic and colloid gold on ATP-hydrolase fermentative systems in membrane of Bacillus sp. B4253 and Bacillus sp. B4851]. Ukrainskyi Biokhimichnyi Zhurnal, 79(4), 46–51 (in Ukrainian).

Dutta, D., Sundaram, S. K., Teeguarden, J. G., Riley, B. J., Fifield, L. S., Jacobs, J. M., Addleman, S. R., Kaysen, G. A., Moudgil, B. M., & Weber, T. J. (2007). Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences, 100, 303–315.

Egorova, E. M., Revina, A. A., Rostovshhikova, T. N., & Kiseleva, O. I. (2001). Baktericidnye i katalicheskie svojstva stabil’nyh metallicheskih nanochastic v obratnyh micellah [Bactericidal and catalytic properties of stable metallic nanoparticles in inverse micelles]. Vestnik Moskovskogo universiteta. Serija 2: Himija, 42(5), 332–338 (in Russian).

Elder, A. C. P., Gelein, R., Azadniv, M., Frampton, M., Finkelstein, J., & Oberdörster, G. (2002). Systemic interactions between inhaled ultrafine particles and endotoxin. The Annals of Occupational Hygiene, 46(s1), 231–234.

Garçon, G., Dagher, Z., Zerimech, F., Ledoux, F., Courcot, D., Aboukais, A., Puskaric, E., & Shirali, P. (2006). Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicology in Vitro, 20(4), 519–528.

Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15(4), 897–900.

Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995–4021.

Ivanytsia, V. I., & Rakhimova, E. L. (2002). Zhiznesposobnost’ liofilizirovannyh kletok Myxococcus xanthus UCM 10041 i Polyangium cellulosum UCM 10043 v prisutstvii razlichnyh antioksidantov [The viability of lyophilized Myxococcus xanthus cells UCM 10041 and Polyangium cellulosum UCM 10043 in the presence of various antioxidants]. Mikrobiologichny Zhurnal, 64(5), 3–9 (in Russian).

Jahnen-Dechent, W., & Simon, U. (2008). Function follows form: Shape complementarity and nanoparticle toxicity. Nanomedicine, 3(5), 601–603.

Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., & Guo, X. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science and Technology, 39(5), 1378–1383.

Kabanov, A. V. (2006). Polymer genomics: An insight into pharmacology and toxicology of nanomedicines. Advanced Drug Delivery Reviews, 58(15), 1597–1621.

Kagan, V. E., Bayir, H., & Shvedova, A. A. (2005). Nanomedicine and nanotoxicology: Two sides of the same coin. Nanomedicine: Nanotechnology, Biology and Medicine, 1(4), 313–316.

Kharchuk, I. A. (2005). Anabioz: Osnovne ponjatija i soprovozhdajushhie ego processy (obzor) [Anabiosis: Laws and accompanying its processes (Review)]. Jekologija Morja, 70, 62–78 (in Russian).

Lewinski, N., Colvin, V., & Drezek, R. (2008). Cytotoxicity of nanoparticles. Small, 4(1), 26–49.

Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J., & Nel, A. (2002). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111(4), 455–460.

Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

Lynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S., & Dawson, K. A. (2007). The nanoparticle-protein complex as a biological entity; A complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 134–135, 167–174.

Maianski, N. A., Blink, E., Roos, D., & Kuijpers, T. (2004). Rol’ Omi/HtrA2 v kaspazonezavisimoj kletochnoj gibeli nejtrofilov cheloveka [Role of Omi/HtrA2 in a caspase-independent cell death of human neutrophils]. Citokiny i Vospalenie, 3(2), 47–51 (in Russian).

Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.

Owino, J. H., Arotiba, O. A., Hendricks, N., Songa, E. A., Jahed, N., Waryo, T. T., Ngece, R. F., Baker, P. G. L., & Iwuoha, E. I. (2008). Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors (Basel), 8(12), 8262–8274.

Percov, A. V. (Ed.). (1976). Metodicheskie razrabotki k praktikumu po kolloidnoj himii [Methodical developments for the workshop on colloid chemistry]. Izdatel’stvo Moskovskogo Universiteta, Moscow (in Russian).

Powers, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., & Roberts, S. M. (2006). Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences, 90(2), 296–303.

Prohorova, M. I. (Ed.). (1982). Metody biohimicheskih issledovanij (lipidnyj i jenergeticheskij obmen) [Methods of biochemical research (lipid and energy metabolism)] Izdatel’stvo Leningradskogo Universiteta, Leningrad (in Russian).

Rapoport, A. I., Markovskij, A. B., & Beker, M. E. (1982). O povyshenii pronicaemosti vnutrikletochnyh membran pri obezvozhivanii-regidratacii drozhzhej Sacharomyces cerevisiae [On increasing the permeability of intracellular membranes during dehydration-yeast rehydration Sacharomyces cerevisiae]. Mikrobiologija, 51(6), 901–904 (in Russian).

Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 21(23), 10644–10654.

Shvedova, A. A., Kisin, E., & Murray, A. R. (2004). Exposure of human bronchial cells to carbon nanotubes caused oxidative stress cytotoxicity. Proceedings of the Society for Free Radical Research Meeting. European Section (Ioannina, Greece, 26–29 June 2003), 91–103.

Shvedova, A. A., Kisin, E., Keshava, N., Murray, A. R., Gorelik, O., Arepalli, S., Gandelsman, V. Z., & Castranova, V. (2004). Cytotoxic and genotoxic effects of single wall carbon nanotube exposure on human keratinocytes and bronchial epithelial cells. The 227th American Chemistry Society National Meeting (Anaheim, CA, 28 March–1 April 2004): Abstracts.

Silva, G. A. (2004). Introduction to nanotechnology and its applications to medicine. Surgical Neurology, 61(3), 216–220.

Sljunjaeva, M. K. (2012). Izmenenie aktivnosti indikatornyh fermentov syvorotki krovi pri podkozhnom vvedenii nanochastic zheleza [Change in the activity of indicator serum enzymes with subcutaneous injection of iron nanoparticles]. Bjulleten’ Medicinskih Internet-Konferencij, 2(4), 181 (in Russian).

Ulberg, Z. R. (2005). Kolloidno-himicheskie svojstva biologicheskih nanosistem. Biomembrany [Colloid-chemical properties of biological nanosystems. Biomembranes]. In: Ulberg, Z. R. (Ed.). Kolloidno-himicheskie osnovy nanonauki [Colloid-chemical fundamentals of nanoscience] Akademperiodika, Kiev. pp. 199–237 (in Russian).

Weyermann, J., Lochmann, D., & Zimmer, A. (2005). A practical note on the use of cytotoxicity assays. International Journal of Pharmaceutics, 288(2), 369–376.

Xu, C., Tung, G. A., & Sun, S. (2008). Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chemistry of Materials, 20(13), 4167–4169.

Yamakoshi, Y., Umezawa, N., Ryu, A., Arakane, K., Miyata, N., Goda, Y., Masumizu, T., & Nagano, T. (2003). Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2–• versus 1O2. Journal of the American Chemical Society, 125(42), 12803–12809.

Yan, F., Chen, J., & Ju, H. (2007). Immobilization and electrochemical behavior of gold nanoparticles modified leukemia K562 cells and application in drug sensitivity test. Electrochemistry Communications, 9(2), 293–298.

Zhu, M.-T., Feng, W.-Y., Wang, B., Wang, T.-C., Gu, Y.-Q., Wang, M., Wang, Y., Ouyang, H., Zhao, Y. L., & Chai, Z.-F. (2008). Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology, 247(2–3), 102–111.

How to Cite
Roman’ko, M. Y. (2017). Biochemical markers of safety of nano-particles of metals on the model of isolated subcultural fractions of eukaryotes. Regulatory Mechanisms in Biosystems, 8(4), 564–568.