Mechanism of changes of peripheral neuromuscular endings of the tongues of rats with experimental streptozotocyn diabetes mellitus

Keywords: diabetes mellitus, neuro-muscle endings, tongue


This paper presents the characteristics of dynamics of morphological changes of neuromuscular endings of the tongues of rats with experimentally induced streptozotocin diabetes mellitus. The hysto-ultrastructural research showed pathomorphological changes in different periods of the experimental diabetes mellitus. The patterns of these changes indicate the close interrelation between neuromuscular endings and elements of muscular tissues. During experimental streptozotocin diabetes mellitus, there occured interconnected structural changes of muscle fibers, myelin nerve fibers and the microcirculatory channel of the tongue with damage to the neuromuscular endings. In the dynamics of the diabetic process, three phases were distinguished: the phase of reactive-dystrophic changes with maximum severity two weeks after the beginning of the experimental modeling of streptozotocin diabetes mellitus; the phase of destructive-dystrophic processes, which began after the fourth week from the beginning of the modeling of experimental streptozotocin diabetes; the degenerative-destructive phase, which developed after the sixth week of the experiment. The dynamics of changes in the neuromuscular endings are also related to the duration of diabetes mellitus, they occur in two stages: in the first stage (up to 4 weeks) reactive processes were observed, in the second (6–8 weeks) – dystrophic processes. The uneven degree of their manifestation is related to the reaction of the microcirculatory channel of neuromuscular endings and composition of the tongue muscles. The greatest sensitivity to hyperglycemia was observed in muscle fibers of the intermediate type. 


Abdel-Reheim, E. S., Abd-Elmoneim, A. A., & Hosni, A. A. (2014). Fatty-sucrosed diet/minimal dose of streptozotocin-treated rat: A novel model of gestational diabetes mellitus, metabolic and inflammatory insight. Journal of Diabetes and Metabolism, 5(9), 430–435.

Azam, L., Winzer-Serhan, U., & Leslie, F. M. (2003). Co-expression of α7 and β2-nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons. Neuroscience, 119(4), 965–977.

Bera, A., & Nandi, P. K. (2014). Nucleic acid induced unfolding of recombinant prion protein globular fragment is pH dependent. Protein Science, 23(12), 1780–1788.

Borer, J. (2006). Therapeutic effects of IF blockade: Evidence and perspective. Pharmacological Research, 53(5), 440–445.

Bril, V. (2014). Neuromuscular complications of diabetes mellitus. Continuum: Lifelong Learning in Neurology, 20, 531–544.

Brownlee, M., Vlassara, H., & Cerami, A. (1986). Trapped immunoglobulins on peripheral nerve myelin from patients with diabetes mellitus. Diabetes, 35(9), 999–1003.

Byrd, J. A., Bruce, A. J., & Rogers, R. S. (2003). Glossitis and other tongue disorders. Dermatologic Clinics, 21(1), 123–134.

Carette, C., Dubois-Laforgue, D., Gautier, J.-F., & Timsit, J. (2011). Diabetes mellitus and glucose-6-phosphate dehydrogenase deficiency: From one crisis to another. Diabetes and Metabolism, 37(1), 79–82.

Colev, V. (2008). Experimental models in studies of diabetes mellitus. Pathophysiology, 5, 242.

Crone, S. A., & Sharma, K. (2011). Patterning spinal motor activity in the absence of synaptic excitation. Neuron, 71(6), 957–959.

Demidova, T. Y. (2010). Vascular complications of type 2 diabetes mellitus beyond the reach of glycemic control. Diabetes Mellitus, 13(3), 111.

García, M. R., Pearlmutter, B. A., Wellstead, P. E., & Middleton, R. H. (2013). A slow axon antidromic blockade hypothesis for tremor reduction via deep brain stimulation. PLoS ONE, 8(9), 734–756.

Grigoletto, J., Pukaß, K., Gamliel, A., Davidi, D., Katz-Brull, R., Richter-Landsberg, C., & Sharon, R. (2017). Higher levels of myelin phospholipids in brains of neuronal α-synuclein transgenic mice precede myelin loss. Acta Neuropathologica Communications, 5(1), 1–10.

Ignacio, A. B., & Felix, L. S. (2016). Diabetes mellitus and neuromuscular blockade: Review. Journal of Diabetes and Metabolism, 7(6), 1–8.

Ishibashi, F., Kojima, R., Taniguchi, M., Kosaka, A., Uetake, H., & Tavakoli, M. (2016). The expanded bead size of corneal c-nerve fibers visualized by corneal confocal microscopy is associated with slow conduction velocity of the peripheral nerves in patients with type 2 diabetes mellitus. Journal of Diabetes Research, 20(16), 1–9.

Jackowiak, H., Skieresz-Szewczyk, K., Kwieciński, Z., Godynicki, S., Jackowiak, K., & Leszczyszyn, A. (2014). Light microscopy and scanning electron microscopy studies on the reduction of the tongue microstructures in the white stork (Ciconia ciconia, Aves). Acta Zoologica, 96, 436–441.

Jin, H. Y., Piao, M. H., Kim, S. Y., Kang, S. M., Kim, C. H., Kim, D. Y., Park, J. H., Baek, H. S., & Park, T. S. (2008). The morphological observation of gastric nerve fibers in experimental animals and people with diabetes. Diabetes Research and Clinical Practice, 79, 84–85.

Jonsson, M., & Eriksson, L. I. (2007). Role of presynaptic acetylcholine autore ceptors at motor nerve endings on tetanic and train-of-four fade seen during a nondepolarizing neuromuscular block. Anesthesiology, 106(6), 1243–1244.

Konur, S., & Yuste, R. (2004). Imaging the motility of dendritic protrusions and axon terminals: Roles in axonsampling and synaptic competition. Molecular and Cellular Neuroscience, 27(4), 427–440.

Kuznetsov, K. A., Shckorbatov, Y. G., Kolchigin, N. N., & Nikolov, O. T. (2016). Changes of chromatin and cell membranes in exfoliated human buccal epithelium cells exposed to non-ionizing and ionizing electromagnetic fields. Conference Paper published Sep 2016 in 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS).

Leem, J., & Koh, E. H. (2012). Interaction between mitochondria and the endoplasmic reticulum: Implications for the pathogenesis of type 2 diabetes mellitus. Experimental Diabetes Research, 20(12), 1–8.

McKelvey, C. (2014). Axon transport deficits: Neurodegeneration’s first sign? Multiple Sclerosis Discovery Forum, 12, 1–10.

Meo, S. A. (2009). Diabetes mellitus: Health and wealth threat. International Jour nal of Diabetes Mellitus, 1(1), 42.

Muntoni, F. (2012). Novel neuromuscular diseases. Neuromuscular Disorders, 22(9–10), 804.

Nwayyir, H. A. (2017). Is glucose-6-phosphate dehydrogenase deficiency a risk factor for proliferative diabetic retinopathy in male patients with type 1 diabetes mellitus in basrah? Journal of Medical Science and Clinical Research, 5(1), 15173–15179.

O’Reilly, D., & Long, R. G. (2008). Diabetes and the gastro-intestinal tract. Digestive Diseases, 5(1), 57–64.

Ohnishi, A., Harada, M., Tateishi, J., Ogata, J., & Kawanami, S. (1983). Segmen tal demyelination and remyelination in lumbar spinal root of patients dying with diabetes mellitus. Annals of Neurology, 13(5), 541–548.

Oyebode, O. R. O., Hartley, R., Singhota, J., Thomson, D., & Ribchester, R. R. (2012). Differential protection of neuromuscular sensory and motor axons and their endings in WldS mutant mice. Neuroscience, 200, 142–158.

Pertseva, M. N., Kuznetsova, L. A., & Shpakov, A. O. (2013). New conceptual approach for search for molecular causes of diabetus mellitus, based on study of functioning of hormonal signaling systems. Journal of Evolutionary Biochemistry and Physiology, 49(5), 457–468.

Popel’, S. L., Baskevich, O. V., Zhurakіvskyi, V. M., Zhurakіvska, O. Y., Melnik, I. V., Krasnopolskiy, S. Z., & Atamanchuk, O. V. (2017). Three-dimensional structure of the lingual papillae of healthy rats and rats with experimental diabetes mellitus (in the context of mechanism of development of diabetic glossitis. Regulatory Mechanisms in Biosystems, 8(1), 58–65.

Pourlis, A. F. (2014). Morphological features of the tongue in the quail (Coturnix coturnix japonica). Journal of Morphological Sciences, 31(3), 177–181.

Rehman, K., & Akash, M. S. H. (2017). Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? Journal of Cellular Biochemistry, 99, 1–9.

Rezki, A., Merioud, B., Delmas, D., Cyril, C., Scheiwiller, R., Leblé, R., & Valensi, P. (2016). Sequential compression/decompression by a pulsating suit increases cutaneous microcirculatory blood flow in patients with type 2 diabetes. Diabetes and Metabolism, 42(4), 298.

Rosengren, L., Wronski, A., Haglid, K. G., Jarlstedt, J., & Rönnbäck, L. (1977). Amino acid incorporation into total protein and levels of S-100 protein in discrete rat brain areas after prolonged protein or amino acid restriction. Journal of Neuroscience Research, 3(2), 153–161.

Rukavina, M. (2016). Typ-1-Diabetes – Verhältnis Proinsulin / C-Peptid mit Pathogenese Assoziiert. Diabetologie und Stoffwechsel, 11(6), 384–396.

Sanders, I., & Mu, L. (2013). A three-dimensional atlas of human tongue muscles. Anatomical Record, 296(7), 1102–1114.

Semenko, V. V., & Savytskyi, I. V. (2017). Development of experimental model of diabetes mellitus. Journal of Endocrinology, 13(4), 276–280.

Shckorbatov, Y., Rudneva, I., Pasiuga, V., Grabina, V., Kolchigin, N., Ivanchenko, D., Kazanskiy, O., Shayda, V., & Dumin, O. (2010). Electromagnetic field effects on Artemia hatching and chromatin state. Open Life Sciences, 5(6).

Silinsky, E. M. (2013). Low-frequency neuromuscular depression is a consequen ce of a reduction in nerve terminal Ca2+ currents at mammalian motor nerve endings. Anesthesiology, 119(2), 326–334.

Tooke, J. E. (2003). The microcirculation in diabetes mellitus. International Textbook of Diabetes Mellitus.

Uemura, M., Tamada, Y., & Suwa, F. (2009). Morphological study of the connective tissue papillae and the capillary loops on the lingual dorsum in the type 2 diabetes mellitus model rats. Okajimas Folia Anatomica Japonica, 85(4), 139–149.

Wagner, O. F., Nowotny, P., Vierhapper, H., & Waldhäusl, W. (2008). Plasma con centrations of endothelin in man: Arterio-venous differences and release during venous stasis. European Journal of Clinical Investigation, 20(5), 502–505.

Westfall, S., Lomis, N., Singh, S. P., Dai, S. Y., & Prakash, S. (2015). The gut microflora and its metabolites regulate the molecular crosstalk between diabetes and neurodegeneration. Journal of Diabetes and Metabolism, 6(8), 577–580.

Xie, X.-J., Hu, Y., Cheng, C., Feng, T.-T., He, K., & Mao, X.-M. (2014). Should diabetic ketosis without acidosis be included in ketosis-prone type 2 diabetes mellitus? Diabetes/Metabolism Research and Reviews, 30(1), 54–59.

Zhou, C., Gilbert, J. D., & Byard, R. W. (2011). How useful is basal renal tubular epithelial cell vacuolization as a marker for significant hyperglycemia at autopsy? Journal of Forensic Sciences, 56(6), 1531–1533.

How to Cite
Luchynskyi, M., Luchinskyi, V., Shcherba, V., Demkovych, A., & Luchinska, Y. (2017). Mechanism of changes of peripheral neuromuscular endings of the tongues of rats with experimental streptozotocyn diabetes mellitus. Regulatory Mechanisms in Biosystems, 8(3), 397-402.