The effect of biologically active feed additives of humilid substances on the antioxidant system in liver mitochondria of gerbils

  • O. O. Dyomshina Оles Honchar Dnipro National University
  • G. O. Ushakova Оles Honchar Dnipro National University
  • L. M. Stepchenko Dnipro State Agrarian-Economic University
Keywords: Humilid, ascorbic acid, Eco-impulse Animal, aspartate aminotransferase, catalase, superoxide dismutase, TBA-active products, cytochrome C


Mitochondria are organelles that are most sensitive to the action of stressors on any cell of the entire organism and exposure to chemicals which can cause its dysfunction and cell death in general. Especially sensitive to adverse conditions are liver mitochondria, where the processes of biotransformation of endogenous and exogenous metabolites are formed, not only in the liver, but also in other organs and tissues. Mitochondrial dysfunction can cause instant hepatic cytolysis and steatosis. Therefore, early detection of mitochondrial toxicity is important during preclinical studies of new pharmacological agents, as this will help avoid remote negative effects. The biologically active feed additive Humilid, a complex of humic acids known for their antidiarrheal, analgesic, immune-stimulating, and antimicrobial properties; shows a corrective effect on the activity of the lysosomal cathepsin; enhances the positive effect of hematopoiesis on hemoglobin and its quality indicators consisting of red blood cells; and activates the synthesis and accumulation of fibronectin expression that takes part in the formation of immunological protection of animals. The objective of our experiment was to determine the effect of complex biologically active feed additives based on humic substances on the biochemical indicators of the liver mitochondrial antioxidant system of Mongolian gerbils (Meriones unguiculatus Milne-Edwards, 1867). The experiment was conducted on mature (6 months) Mongolian gerbils. The data obtained showing the influence of the biologically active feed additives Humilid, alone or in combination with ascorbate and Eco-impulse Animal, on the antioxidant defense system of liver mitochondria of gerbils are presented in this article. The proven antioxidant effect of humic substances in the mitochondrial fraction of the liver which inhibits the accumulation of oxidized products in the cells is shown, confirmed by the decrease in the number of TBA-active products, catalase activation, and an increase in the concentration of cytochrome C. Also, an increase in the amount of cytochrome C, which is a direct participant in the mitochondrial respiratory chain and provides efficient electron transport, indicates the acceleration of energy supply processes. The functional activity of mitochondria was accompanied by increased activity of aspartate aminotransferase involved in the shuttle of malate-aspartate transport of electrons through the mitochondrial membrane. The results obtained indicate the positive reaction of gerbil liver mitochondria under the influence of the biologically active feed additives of humic substance. 


Adrianova, I. G. & Sidorova, N. D. (1990). Citohrom С i ego rol’ v processah tkanevogo dyhanija. Citohrom С i ego klinicheskoe primenenie [Cytochrome C and its role in the processes of tissue respiration. Cytochrome C and its clinical application]. Leningrad University Press, Leningrad (in Russian).

Andreeva, L. Y., Kozhemjakyn, L. A., & Kyshkun, A. A. (1988). Modyfykacyja metoda opredelenyja perekysej lypydov v teste s tyobarbyturovoj kyslotoj [Modification of the method for the determination of lipid peroxides in the test with thiobarbituric acid]. Laboratory Work, 2, 41–43 (in Russian).

Begriche, K., Massart, J., Robin, M.-A., & Borgne-Sanchez, A. (2011). Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. Bernard Fromenty Journal of Hepatology, 54(4), 773–794.

Birk, A. V., Chao, W. M., Bracken, C., Warren, J. D., & Szeto, H. H. (2014) Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. British Journal of Pharmacology, 171(8), 2017–2028.

Brinkmann, C. R., Jensen, L., Dagnaes-Hansen, F., Holm, I. E., Endo, Y., Fujita, T., Thiel, S., Jensenius, J. C., & Degn, S. E. (2013). Mitochondria and the lectin pathway of complement. The Journal of Biological Chemistry, 288(12), 8016–8027.

Buron, N., Porceddu, M., Roussel, C., Begriche, K., Trak-Smayra, V., Gicquel, T., Fromenty, B., & Borgne-Sanchez, A. (2017). Chronic and low exposure to a pharmaceutical cocktail induces mitochondrial dysfunction in liver and hyperglycemia: Differential responses between lean and obese mice. Environmental Toxicology, 32, 1375–1389.

Burtis, C., Аshvud, E., & Bruns, D. (2012). Tietz textbook of clinical chemistry and molecular diagnostics, 5th ed. Saunders.

Cui, H., Kong, Y., & Zhang, H. (2012). Oxidative stress, mitochondrial dysfunction, and aging. Journal of Signal Transduction, 646–654.

Dai, D. F., Chiao, Y. A., Martin, G. M., Marcinek, D. J., Basisty, N., Quarles, E. K., & Rabinovitch, P. S. (2017). Chapter seven mitochondrial targeted catalase: Extended longevity and the roles in various disease models. Progress in Molecular Biology and Translational Science, 146, 203–241.

Donghong, L., Lei, L., Pengxi, L., Yi, L., & Xiangyun, C. (2015). Apoptosis of hela cells induced by a newtargeting photosensitizer-based PDT via a mitochondrial pathway and ER stress. OncoTargets and Therapy, 8, 703–711.

Dykens, J. A., Marroquin, L. D., & Will, Y. (2007). Strategies to reduce late-stage drug attrition due to mitochondrial toxicity. Expert Review of Molecular Diagnostics, 7, 161–175.

Felser, A., Stoller, A., Morand, R., Schnell, D., Donzelli, M., Terracciano, L., Bouitbir, J., & Krähenbühl, S. (2014). Hepatic toxicity of dronedarone in mice: Role of mitochondrial β-oxidation, Toxicology, 323, 1–9.

Gergalova, G. L., & Skok, M. V. (2011). Vplyv nikotynu na membrannyj potencial mitohondrij: Uchast’ nikotynovyh acetylholinovyh receptoriv [The influence of nicotine on the mitochondrial membrane potential, participate nicotinic acetylcholine receptor]. The Ukrainian Biochemical Journal, 83(5), 13–21 (in Ukrainian).

Hamdallah, A., Davydov, V. V., & Shvets, V. N. (2014). Oxidative stress and the enzyme system of aldehyde catabolism in the muscle mitochondria of immobilized pubertal rats. Ukrainian Biochemical Journal, 86(6), 50–55 (in Ukrainian).

Hynes, J., Nadanaciva, S., Swiss, R., Carey, C., Kirwan, S., & Will, Y. (2013). A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays. Toxicology in Vitro, 27(2), 560–569.

Koroljuk, M. A., Yvanova, L. Y., Majorova, Y. G., & Tokareva, V. E. (1988). Metod opredelenyja aktyvnosty katalazy [Method for the determination of catalase activity]. Laboratory Work, 1, 16–19 (in Russian).

Kostjuk, V. A., Potapovych, A. Y., & Kovaleva, Z. V. (1990). Prostoj i chuvst-vitel’nyj metod opredelenija aktivnosti superoksiddismutazy, osnovannyj na reakcii okislenija kvercetina [A simple and sensitive method for determining the activity of superoxide dismutase, based on the oxidation reaction of quercetin]. Questions of Medical Chemistry, 36, 2, 88–91 (in Russian).

Labbe, G., Pessayre, D., & Fromenty, B. (2008). Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundamental and Clinical Pharmacology, 22, 335–353.

Lapointe, J. (2014). Mitochondria as promising targets for nutritional interventions aiming to improve performance and longevity of sows. Journal of Animal Physiology and Animal Nutrition, 98(5), 809–821.

Lapointe, J., Hughes, B. G., Bigras, E., & Hekimi, S. (2014). Compensatory elevation of voluntary activity in mouse mutants with impaired mitochondrial energy metabolism. Physiological Reports, 2(11): e12214.

Melnichuk, S. D., Khizhnyak, S. V., Morozov, V. S., & Voytsіtsky, V. M. (2013). Aktyvnist’ NAD•H-generujuchyh enzymiv ta vmist cytohromiv u mitohondrijah pechinky ta miokarda shhuriv za eksperymental’nogo gipobiozu [The activity of NAD•H-generating enzymes and content of cytochromes in the mitochondria of liver and myocardium of rats under experimental hibernation]. The Ukrainian Biochemical Journal, 85(4), 75–81 (in Ukrainian).

Pan, K., Gupta, P., Damania, P., Yadav, A. K., Gupta, A., Ashraf, A., & Venugopal, S. K. (2016). Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells. BMC Complementary and Alternative Medicine. 16, 148.

Paronik, V. A., Stepchenko, L. M., Djachenko, L. M., Ljevyh, A. E., & Shevcova, A. I. (2015). Vplyv korvitynu ta gumilidu na stan oksydantno-antyoksy-dantnoi’ systemy shhuriv na foni vvedennja adrenalinu [Impact of corvitin and humilid on the state of the oxidant-antioxidant system of rats on the background of the introduction of adrenaline]. Biologija Tvaryn, 17(4), 109–114 (in Ukrainian).

Ryzhkovskaia, E. L., Verigo, N. S., Kuznetsova, T. E., & Ulashchik, V. S. (2014). The ultrastructural organization of the liver of rats with experimental hepatitis after drinking mineral water containing humic acids. Voprosy Kurortologii, Fizioterapii, i Lechebnoi Fizicheskoi Kultury, 5, 35–41 (in Russian).

Selyvanov, E. A., Hmilova, G. A., Beljaeva, Y. S., Slepneva, L. V., & Sydorova, N. D. (1997). Sposob kolichestvennogo opredelenija citohroma C v preparatah, soderzhashhih kollagen [Method of quantitative determination of cytochrome C in preparations containing collagen]. Patent of Russian Federation № 2084869, G01N21/25, application number 94023438/25 (in Russian).

Serova, D., Taran, O., & Dyomshina, O. (2016). Biologichna aktyvnist’ preparativ na osnovi guminovyh rechovyn u pechinci pishhanok (Meriones unguiculatus) [Biological activity of humic substances in the liver of Mongolian gerbils (Meriones unguiculatus)]. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 410–415 (in Ukrainian).

Stepchenko, L. M. & Skorik, M. V. (2006). Stan systemy antyoksydantnogo zahystu erytrocytiv kurej-nesuchek za dii’ guminovyh rechovyn [System status of erythrocyte antioxidant protection of laying hens under the influence of humic substance]. Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology S. Z. Gzhytsky, 7(3–4), 137–143 (in Ukrainian).

Stepchenko, L. M. (2010). Znachenia katepsinu B ta jogo inhibitoriv v reguljaciji obminnyh procesiv u kurchat-brojleriv za diji rechovyn guminovoji prypody [The value of cathepsin B and its inhibitors in the regulation of metabolism in broiler chickens for the actions of humic substances]. Biologija Tvaryn, 12(2), 180–188 (in Ukrainian).

Surai, P. F., & Fisinin, V. I. (2013). Natural antioxidants in hen’s embryogenesis and antioxidant defence in postnatal development. Agricultural Biology, 2, 3–17.

Szabó, J., Vucskits, A. V., Berta, E., Andrásofszky, E., Bersényi, A., & Hullár, I. (2017). Effect of fulvic and humic acids on iron and manganese homeostasis in rats. Acta Veterinaria Hungarica, 65(1), 66–80.

Vadzyuk, O. B., Mazur, Y. Y., & Kosterіn, S. O. (2011). Reguljacija funkcionu-vannja ATR-chutlyvogo K+-kanalu mitohondrij miometrija aktyvnymy formamy kysnju [Regulation functioning of ATP-sensitive K+-channels myometrium mitochondrial reactive oxygen species]. Ukrainian Biochemical Journal, 83(3), 48–57 (in Ukrainian).

Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J., & Pinton, P. (2009). Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nature Protocols, 4(11), 1582–1590.

Young, D. S. (2014). Effects on clinical laboratory tests: Drugs, disease, herbs and natural products. American Association for Clinical Chemistry.

How to Cite
Dyomshina, O. O., Ushakova, G. O., & Stepchenko, L. M. (2017). The effect of biologically active feed additives of humilid substances on the antioxidant system in liver mitochondria of gerbils. Regulatory Mechanisms in Biosystems, 8(2), 185-190.