The compartments of the parenchyma of the lymph nodes in newborn bull calves of domestic cattle (Bos taurus)

Keywords: lymphoid lobules, deep cortex units, paracortical and medullary cords, lymphoid nodules


The article analyzes the features of the structure of the lymphoid lobules of the parenchyma of the superficial somatic (Limphonodi subiliaci, L. cervicales superficiales), profund somatic (L. axillares proprii L. poplitei), somatovisceral (L. iliaci mediales, L. retropharyngei mediales) and visceral (L. mediastinales caudales, L. ileocolici) lymph nodes of newborn bull calves of domestic cattle. To visualize clearly the boundaries of the structural components of lymphoid lobules we used the author’s modification of the impregnation of total median frozen histological sections with silver nitrate. We have established a high level of tissue differentiation of the lymph nodes, a significant development of the lymphoid parenchyma, the division of the parenchyma into lymphoid lobules, the presence in the lobules of all the main structural components that are represented by two morphotypes. The first morphotype is ribbon-like perisinusoidal cords (interfollicular zone, paracortical and medullary cords). The second morphotype is rounded lymphoid formations (central zones of deep cortex units, lymphatic nodules). Lymphoid lobules are located along the marginal sinus in one row, they are better developed and differentiated in the visceral lymph nodes. In all the lymph nodes, the lymphoid lobules have a similar histoarchitectonic, and each structural component of the lymphoid lobules has a specific architectonic of the reticular meshwork and the density of the location of the fibroblastic reticulocytes. We determined that the structures of the first morphotype which provide the migration of lymphocytes, the detection of antigens and the accumulation of plasmocytes are more developed. We have established that the relative volume of structures of the first morphotype is 4.5–8.0 times larger than the volume of the structures of the second morphotype, which provide clonal proliferation of T and B lymphocytes, especially in deep somatic lymph nodes. Among the zones of the second morphotype, predominate T-dependent zones, the relative volume of which considerably exceeds the volume of B-dependent zones (lymphoid nodules): in the superficial somatic lymph nodes by 14–30 times, profound somatic by 12–14 times, somatovisceral by 6–7 times and visceral by 4.5–5.5 times. We determined that lymphatic nodules can form in different parts of compartments: in the interfollicular zone and paracortical cords of all lymph nodes and in the medullary cords of the visceral lymph nodes. The study shows that the parenchyma of the lymph nodes of newborn bull calves has a high degree of maturity, contains a full set of structural markers of immunocompetence, among which predominate the components that support lymphocyte migration, antigen detection and accumulation of plasma cells.


Ager, A. (2017). High endothelial venules and other blood vessels: Critical regulators of lymphoid organ development and function. Frontiers in Immunology, 8(3), 1–16.
Andrian, U. H., & Mempel, T. R. (2003). Homing and cellular traffic in lymph nodes. Nature Reviews Immunology, 3, 867–878.
Avtandilov, G. G. (1990). Meditsinskaya morfometrya [Medical morphometry]. Medicine, Moscow (in Russian).
Azzi, J., Yin, Q., Uehara, M., Ohori, S., Tang, L., Cai, K., Ichimura, T., McGrath, M., Maarouf, O., Kefaloyianni, E., Loughhead, S., Petr, J., Sun, Q., Kwon, M., Tullius, S., von Andrian, U. H., Cheng, J., & Abdi, R. (2016). Targeted delivery of immunomodulators to lymph nodes. Cell Reports, 15(6), 1202–1213.
Belisle, C., & Sainte-Marie, G. (1981). Tradimentional study of the deep cortex of the rat lymph node. III. Morphology of the deep cortex units. The Anatomical Record, 199(2), 213–226.
Buhvalder, R., Fuks, H., & Hayder, G. (1981). Osnovyi immuniteta. Immunopro-filaktika bolezney zhivotnyih [The basis of immunity. Immunoprophylaxis of animal diseases]. Kolos, Moscow (in Russian).
Butler, J., Sawtell, A., Jarrett, S., Cosgrove, J., Leigh, R., Timmis, J., & Coles, M. (2016). Imaging immunity in lymph nodes: Past, present and future. Advances in Experimental Medicine and Biology, 915, 329–346.
Capece, T., & Kim, M. (2016). The role of lymphatic niches in T cell differentiation. Molecules and Cells, 39(7), 515–523.
Chandrasekaran, S., & King, M. R. (2014). Microenvironment of tumor-draining lymph nodes: Opportunities for liposome-based targeted therapy. International Journal of Molecular Sciences, 15(11), 20209–20239.
De Bruyn, P. P., & Cho, Y. (1990). Structure and function of high endothelial postcapillary venules in lymphocyte circulation. Current Topics in Pathology, 84(1), 85–101.
Elmore, S. A. (2006). Enhanced histopathology of the lymph nodes. Toxicologic Pathology, 34(5), 634–647.
Emelyanenko, P. A. (1987). Immunologia zhivotnych v period vnytriutrobnogo razvitia [Immunology of animals in the period of intrauterine development]. Agropromizdat, Moscow (in Russian).
Gavrilin, P. N. (1999). Modificatsiya sposoba impregnatsii serebrom po Futy gistotopogramm organov krovetvoreniya, izgotovlennyih na microtome-kriostate [Modification of the silver impregnation method according to Fut histotopograms of hemopoietic organs made on a microtome cryostat]. Vestnik Morphologii, 5(1), 106–108 (in Russian).
Gavrilin, P. N. (2000). Osoblyvosti dynamiky masy limfoi’dnyh organiv u teljat neonatal’nogo i molochnogo periodiv [Features of the dynamics of the mass of lymphoid organs in neonatal and dairy calves]. Agrarnyj Visnyk Prychornomorya, 4(9), 24–29 (in Ukrainian).
Gavrilin, P. N., Prokushenkova, O. H., Masjuk, D. N., & Perepechaeva, N. H. (2013). Peculiarities of structural and functional organization of Domestic Bull’s lymph nodes parenchyma (Bos primigenius taurus L.). Naukovyj Visnyk Nycionalnogo Universytetu Bioresursiv i Pryrodokorystuvannja Ukrainy, 188(1), 92–101 (in Ukrainian).
Geptner, V. C., Naumov, N. P., & Jurgenson, P. B. (1961). Mlekopitajushhie Sovetskogo Sojuza. Parnokopytnye i mozolenogie [Mammals of the Soviet Union. Clovenhoofed and soliped]. Moscow (in Russian).
Gretz, J. E., Anderson, C. C., & Shaw, S. (1997). Cords, channels, corridors and conduits, critical architectural facilitating cell interactions in the lymph node cortex. Immunological Reviews, 156, 11–24.
Gunnes, G., Press, C., Tverdal, A., & Landsverk, T. (1998). Compartments within the lymph node cortex of calves and adult cattle differ in the distribution of leukocyte population: An immunohistochemical study using computer-assisted morphometric analysis. Developmental and Comparative Immunology, 22(1), 111–123.
Hoshi, N., Hashimoto, Y., Kitagawa, H., Kon, Y., & Kudo, N. (1986). Histological and immunohistochemical studies on the architecture of lymph nodes in pig. Japan Journal Veterinary Science, 48(6), 1097–1107.
Houston, S. A., Cerovic, V., Thomson, C., Brewer, J., Mowat, A. M., & Milling, S. (2016). The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunology, 9(2), 468–478.
Ikomi, F., Kawai, Y., & Ohhashi T. (2012). Recent advance in lymph dynamic analysis in lymphatics and lymph nodes. Annals of Vascular Diseases, 5(3), 258–268.
Iwasaki, R., Mori, T., Ito, Y., Kawabe, M., Murakmi, M., & Maruo, K. (2016). Computed tomographic evaluation of presumptively normal canine sternal lymph nodes. Journal of the American Animal Hospital Association, 52(6), 371–377.
Jafarnejad, M., Woodruff, M. C., David, C. Z., Michael, C. C., & Moore, J. E. (2015). Modeling lymph flow and fluid exchange with blood vessels in lymph nodes. Lymphatic Research and Biology, 13(4), 234–247.
Jia, L., Xie, Z., Zheng, J., Liu, L., He, Y., Liu, F., & He, Y. (2012). Morphological studies of lymphatic labyrinths in the rat mesenteric lymph node. The Anatomical Record, 295, 1291–1301.
Kaldjian, E. P., Gretz, J. E., Anderson, A. O., Shi, Y., & Shaw, S. (2001). Spatial and molecular organization of lymph node T cell cortex: A labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membrane-like extracellular matrix. International Immunology, 13(10), 1243–1253.
Katakai, T., Hara, T., & Lee, J. H. (2004). A novel reticular stromal structure in lymph node cortex: An immuno-platform for interactions among dendritic cells, T cells and B cells. International Immunology, 16(8), 1133–1142.
Kelly, R. H. (1975). Functional anatomy of lymph nodes. The paracortical cords. International Archives of Allergy and Immunology, 48(6), 836–849.
Koljakov, J. E. (1986). Veterinarnaja immynologija [Veterinary immunology]. Agropromizdat, Moscow (in Russian).
Konenkov, V. I., Shkyrat, G. A., & Kolesnikov, A. P. (2008). Limfaticheksij uzel: Morfofunkcional’naja harakteristika i mezhkletochnaja kooperacija [Lymph node: Morphofunctional characteristic and intercellular cooperation.]. Vestnik Limfologii, 4, 35–43 (in Russian).
Kowala, M. C., & Schoefi, G. I. (1986). The popliteal lymph node of the mouse: Internal architecture, vascular distribution and lymphatic supply. Journal of Anatomy, 148(1), 25–46.
Krishtoforova, B. V., Lemeshenko, V. V., & Stegnej, Z. G. (2007). Biologichni osnovy veterynarnoi’ neonatologii’ [Biological basis of veterinary neonato-logy]. Simferopol (in Ukrainian).
Lee, C. M., Park, D. W., Park, S., Kim, J. H., Park, S. H., & Kim, C. S. (2017). Lymph node dissection using bipolar vessel-sealing device during reduced port laparoscopic distal gastrectomy for gastric cancer: Result of a pilot study from a single. Journal of Laparoendoscopic and Advanced Surgical Techniques, 2017, 27.
Margaris, K. N., & Black, R. A. (2012). Modelling the lymphatic system: Challenges and opportunities. Journal of the Royal Society Interface, 69, 1–12.
Nicander, L., Nafstad, P., Landsverk, T., & Engebretsen, R. H. (1991). A study of modified lymphatics in the deep cortex of ruminant lymph nodes. Journal of Anatomy, 178, 203–212.
Ohtani, O., & Ohtani, Y. (2008). Structure and function of rat lymph nodes. Archives of Histology and Cytology, 71(2), 69–76.
Olson, M. R., McDermott, D. S., & Varga, S. M. (2012). The initial draining lymph node primes the bulk of the CD8 T cell response and influences memory T cell trafficking after a systemic viral infection. PLOS Pathogens, 8(12), 1–15.
Palm, E. A., Friedrich, C. H., & Kleinau, S. (2016). Nodal marginal zone B cells in mice: A novel subset with dormant self-reactivity. Scientific Reports, 6(27687), 1–11.
Platt, A. M., & Randolph, G. J. (2013). Dendritic cell migration through the lymphatic vasculature to lymph nodes. Advances in Immunology, 120, 51–68.
Rouse, R. V., Reichert, R. A., Gallatin, W. M., Weissman, I. L., & Bucher, E. C. (1984). Localization of lymphocyte subpopulation in peripheral lymphoid organs: Directed lymphocyte migration and segregation into specific microenvironments. American Journal of Anatomy, 170, 391–405.
Ruddle, N. H. (2016). High endothelial venules and lymphatic vessels in tertiary lymphoid organs: Characteristics, functions, and regulation. Frontiers in Immunology, 9(7), 1–7.
Sainte-Marie, G. (2010). The lymph node revisited: Development, morphology, functioning, and role in triggering primary immune responses. Anatomical Record, 293(2), 32–37.
Sapin, M. R. (2006). Osobennosti imunnogo otveta pri razlichnych vnechnich vozdeistviyah [Features of the immune response under various external influences]. Morphology, 129(4), 109–110 (in Russian).
Sapin, M. R., Jurina, N. A., & Etingen, L. (1978). Limfaticheskij uzel [Lymph node]. Medicine, Moscow (in Russian).
Sasaki, K., Okouchi, Y., Rothkotter, H. J., & Pabst, R. (1996). Ultrastructural locali-zation of the intercellular adhesion molecule (ICAM-1) on the cell surface of hight endothelial venules in lymph nodes. Anatomical Record, 244(1), 105–111.
Shipman, W. D., Dasoveanu, D. C., & Lu, T. T. (2017). Tertiary lymphoid organs in systemic autoimmune diseases: Pathogenic or protective? F1000Res., 28(6), 1–7.
Sixt, M., Kanazawa, N., Selg, M., Samson, T., Roos, G., Reinhardt, D. P., Pabst, R., Lutz, M. B., & Sorokin, L. (2005). The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T-cell area of the lymph node. Immunity, 22(1), 19–29.
Törö, Y., & Csaba, J. (1970). Az ember normalis es pathologies fejlodese [The human pathologies and normal development]. Budapest (in Hungarian).
Vyrenkov, Y. E., Shishlo, V. K., Antropova, J. G., & Ryzhova, A. V. (1995). Sov-remennye dannye o strukturno-funkcional’noj organizacii limfaticheskogo uzla [Modern data on the structural and functional organization of the lymph node]. Morphology, 103(3), 34–40 (in Russian).
Willard-Mack, C. L. (2006). Normal structure, function, and histology of lymph nodes. Toxicologic Pathology, 34(5), 409–424.
Zelenevsky, N. V. (2013). Mezhdunarodnaja veterinarnaja anatomicheskaja no-menklatura na latinskom i russkom jazykah. Nomina Anatomica Veterinaria [International veterinary anatomical nomenclature in Latin and Russian. Nomina Anatomica Veterinaria]. Mir, Sankt-Peterburg (in Russian).
Zidan, M., & Pabst, R. (2012). Histological, histochemical and immunohistoche-mical study of the lymph nodes of the one humped camel (Camelus dro-medarius). Veterinary Immunology and Immunopathology, 145, 191–198.
How to Cite
Gavrilin, P., GavrilinaО., & KravtsovаM. (2017). The compartments of the parenchyma of the lymph nodes in newborn bull calves of domestic cattle (Bos taurus). Regulatory Mechanisms in Biosystems, 8(2), 169-178.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.