Ultrastructural changes in biofilm forms of staphylococci cultivated in a mixed culture with lactobacilli

  • G. Lavryk Danylo Halytskyi Lviv National Medical University
  • O. Korniychuk Danylo Halytskyi Lviv National Medical University
  • M. Tymkiv Danylo Halytskyi Lviv National Medical University
Keywords: biofilm, Lactobacillus, Staphylococcus aureus, transmission electron microscopy


The capacity of opportunistic bacteria for biofilm formation plays an important role in the development of chronic inflammatory processes, which are difficult to treat. To improve antimicrobial therapy methods, the influence of lactobacilli on the ultrastructure of biofilm-forming clinical strains of staphylococci when co-cultured was investigated. 5 biofilm-forming clinical strains of S. aureus from the skin of acne vulgaris patients (n = 24) were isolated. Using transmission electron microscopy (TEM) the morphological changes of S. aureus cells in the mixed culture with standard strains of Lactobacillus plantarum 8P-A3 and clinical strains of L. fermentum (n = 4) were studied. It was found that in 48 hours after the inoculation on the medium of samples of mixed cultures of L. plantarum 8P-A3 and S. aureus growth of staphylococci was not revealed. Only in some cases of mixed cultures of L. fermentum and biofilm-forming staphylococci was growth of S. aureus obtained. In electron diffraction patterns of control samples of 24-hour staphylococcal monocultures and 48-hour lactobacilli monocultures, natural development of the population at the cellular level was observed. Destructive changes under the influence of lactobacilli (probiotic and clinical strains) were detected in all ultrathin sections of the cells of biofilm-forming and planktonic staphylococci. Significant destructive changes in the cell wall of the staphylococci were observed: thickening, obtaining of irregular form, detachment of the cytoplasmic membrane, the complete destruction of the peptidoglycan layer and the emergence of "shadow cells". On all electron diffraction patterns fibrillar-threadlike structures of DNA could not be observed, but in some cases mesosome-like formations were poorly contrasted. It was established that the surface S-layer of lactobacilli was expressed on a significantly larger scale in the mixed culture with staphylococci. In mixed culture of clinical strains of lactobacilli with biofilm form of S. aureus, staphylococcal cells could be found in a dormant state. Thanks to an experimental model of biofilm in a mixed culture, the development of destructive changes of staphylococci under the influence of the lactobacilli both on the morphological and at the population levels has been assessed. The results obtained can be used in improving the schemes of complex antimicrobial therapy of pyoinflammatory processes with the use of biological preparations, which are composed of lactobacilli, including those in the form of local application. 


Ahimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27(10), 749–754. >> doi.org/10.1016/S0141-0229(00)00295-7

Birger, M. I. (ed.) (1982). Spravochnik po mikrobiologicheskim i virusologi¬cheskim metodam issledovanija [Handbook on microbiological and virological research methods]. Medicine, Moscow (in Russian).

Bondarenko, V. M. (2011). Rol' uslovno-patogennyh bakterij pri hronicheskih vospalitel'nyh processah razlichnoj lokalizacii [The role of opportunistic bacteria in chronic inflammatory processes of different localization]. Triada, Tver (in Russian).

Cameotra, S. S., Makkar, R. S., Kaur, J., & Mehta, S. K. (2010). Synthesis of biosurfactants and their advantages to microorganisms and mankind in Biosurfactants. Springer, New York. >> doi.org/10.1007/978-1-4419-5979-9_20

Chebotar, І. V., Mayansky, А. N., Konchakova, Е. D., Lazareva, А. V., & Chistyakova, V. P. (2012). Antibiotikorezistentnost' biopljonochnyh bakterij [Antimicrobial resistance of bacteria in biofilms]. Clinical Microbiology and Antimicrobial Chemotherapy, 14(1), 51–57 (in Russian).

Cui, L., Ma, X., Sato, K., Okuma, K., Tenover, F. C., Mamizuka, E. M., Gemmell, C. G., Kim, M. N., Ploy, M. C., El-Solh, N., Ferraz, V., & Hiramatsu, K. (2003). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 41(1), 5-14. >> doi.org/10.1128/JCM.41.1.5-14.2003

Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H., & Hiramatsu, K. (2000). Contribution of a thickened cell-wall and its glutamine non-amidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrobial Agents Chemotherape, 44(9), 2276–2285. >> doi.org/10.1128/AAC.44.9.2276-2285.2000

Dall'Antonia, M., Coen, P. G., Wilks, M., Whiley, A., & Millar, M. (2005). Competition between methicillin-sensitive and-resistant Staphylococcus aureus in the anterior nares. Journal of Hospital Infection, 61(1), 62–67. >> doi.org/10.1016/j.jhin.2005.01.008

Derkach, M. P., Humetsky, R. J., & Chaban, M. E. (1977). Kurs variacijnoi' statys¬tyky [A course of the variation statistics]. Vyshha Shkola, Kyiv (in Ukranian).

Dmitriev, B. A., Toukach, F. V., Holst, O., Rietschel, E. T., Ehlers, S. (2004). Tertiary structure of Staphylococcus aureus cell wall murein. Journal of Bacteriology, 186, 7141–7148. >> doi.org/10.1128/JB.186.21.7141-7148.2004

Dobson, A., Cotter, P. D., Ross, R. P., & Hill, C. (2012). Bacteriocin production: A probiotic trait? Applied and Environmental Microbiology, 78(1), 1–6. >> doi.org/10.1128/AEM.05576-1

Dosunmu, E., Chaudhari, A. A., Singh, S. R., Dennis, V. A., & Pillai, S. R. (2015). Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: A potential mechanism for their antimicrobial effect. Journal of Clinical Microbiology, 10, 5025–5034. >> doi.org/10.2147/IJN.S85219

Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (2006). The prokaryotes: Vol. 4: Bacteria: Firmicutes, Cyanobacteria. Springer-Verlag, New York. >> doi.org/10.1007/0-387-30744-3

Eftekhar, F., & Mirmohamadi, Z. (2009). Evaluation of biofilm production by Staphylococcus epidermidis isolates from nosocomial infections and skin of healthy volunteers. International Journal of Medicine and Medical Sciences, 1(10), 438–441.

Ghannoum, M., & O'Toole, G. A. (2004). Microbial biofilms. ASM Press, Washington.

Goldstein, J., Newbury, D. E., Echlin, P., Joy, D. C., Fiori, C., Lifshin, E. (1984). Pastrovaja jelektronnaja mikroskopija i rentgenovskij mikroanaliz [Scanning electron microscopy and X-ray microanalysis]. Mir, Moscow (in Russian).

Gostev, V. V., & Sidorenko, S. V. (2010). Bakterial'nye bioplenki i infekcii [Bac¬terial biofilms and infections]. Zhurnal Infektologii, 2(3), 4–15 (in Russian).

Hall-Stoodley, L., & Stoodley, P. (2009). Evolving concepts in biofilm infections. Cell Microbiology, 11, 1034–1043. >> doi.org/10.1111/j.1462-5822.2009.01323.x

Harriott, M. M., & Noverr, M. C. (2009). Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrobial Agents Chemotherape, 53, 3914–3922. >> doi.org/10.1128/AAC.00657-09

He, X., Hu, W., He, J., Guo, L., Lux, R., & Shi, W. (2011). Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm. Molecular Oral Microbiology, 26(6), 337–352. >> doi.org/10.1111/j.2041-1014.2011.00622.x

Hynönen, U., & Palva, A. (2013). Lactobacillus surface layer proteins: Structure, function and applications. Applied Microbiology and Biotechnology, 97(12), 5225–5243. >> doi.org/10.1007/s00253-013-4962-2

Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171–2178. >> doi.org/10.1128/AEM.02001-07

Khaleghi, M., & Kermanshahi, R. K. (2012). Effect of environmental stresses on S-layer production in Lactobacillus acidophilus ATCC 4356. Advances in Applied Microbiology, 3, 209–224. >> doi.org/10.5772/28334

Kim, J. W., Chung, G. T., Yoo, J. S., Lee, Y. S., & Yoo, J. I. (2012). Autolytic activity and molecular characteristics of Staphylococcus haemolyticus strains with induced vancomycin resistance. Journal of Medical Microbiology, 61(10), 1428–1434. >> doi.org/10.1099/jmm.0.041046-0

Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clinical Microbiology Reviews, 10(3), 505–520.

Lee, S. H., & Kim, Y. J. (2014). A comparative study of the effect of probiotics on cariogenic biofilm model for preventing dental caries. Archives of Microbiology, 196(8), 601–609. >> doi.org/10.1007/s00203-014-0998-7

Lleo, M., Bonato, B., Tafi, M. C., Caburlotto, G., Benedetti, D., & Canepari, P. (2007). Adhesion to medical device materials and biofilm formation capability of some species of enterococci in different physiological states. FEMS Microbiology Letters, 274(2), 232–237. >> doi.org/10.1111/j.1574-6968.2007.00836.x

Macfarlane, S. (2008). Microbial biofilm communities in the gastrointestinal tract. Journal of Clinical Gastroenterology, 242(3), 142–143. >> doi.org/10.1097/MCG.0b013e31816207df

McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179.

Nair, N., Biswas, R., Götz, F., Biswas, L. (2014). Impact of Staphylococcus aureus on pathogenesis in polymicrobial infections. Infection and Immunity, 82(6), 2162–2169. >> doi.org/10.1128/IAI.00059-14

Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews, 34(4), 415–425. >> doi.org/10.1111/j.1574-6976.2009.00200.x

Olson, M. E., Ceri, H., Morck, D. W., Buret, A. G., & Read, R. R. (2002). Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research, 66(2), 86–92.

Onyango, L. A, Dunstan, R. H, Gottfries, J., von Eiff, C., Roberts, T. K. (2012). Effect of low temperature on growth and ultrastructure of Staphylococcus spp. PLoS One, 7(1), e29031. >> doi.org/10.1371/journal.pone.0029031

Otto, M. (2008). Staphylococcal biofilms. In: Bacterial biofilms. Springer, Berlin, Heidelberg. >> doi.org/10.1007/978-3-540-75418-3_10

Pal, S., Tak, Y. K., Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environ¬mental Microbiology, 73(6), 1712–1720. >> doi.org/10.1128/AEM.02218-06

Pascual, A. (2002). Pathogenesis of catheter-related infections: Lessons for new designs. Clinical Microbiology and Infection, 8, 256–264. >> doi.org/10.1046/j.1469-0691.2002.00418.x

Qu, Y., Daley, A. J., Istivan, T. S., Garland, S. M., & Deighton, M. A. (2010). Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: Comprehensive comparisons of bacteria at different stages of biofilm formation. Annals of Clinical Microbiology and Antimicrobials, 9(1), 16. >> doi.org/10.1186/1476-0711-9-16

Rasmussen, T. B., & Givskov, M. (2006). Quorum-sensing inhibitors as anti-pathogenic drugs. International Journal of Medical Microbiology, 296(2), 149–161. >> doi.org/10.1016/j.ijmm.2006.02.005

Reid, G. (1999). Biofilms in infectious disease and on medical devices. International Journal of Antimicrobial Agents, 11(3), 223–226. >> doi.org/10.1016/S0924-8579(99)00020-5

Revdiwala, S., Rajdev, B. M., & Mulla, S. (2012). Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup. Critical Care Research and Practice, 2012, 945805. >> doi.org/10.1155/2012/945805

Sambanthamoorthy, K., Feng, X., Patel, R., Patel, S., & Paranavitana, C. (2014). Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology, 14(1), 197. >> doi.org/10.1186/1471-2180-14-197

Samot, J., & Badet, C. (2013). Antibacterial activity of probiotic candidates for oral health. Anaerobe, 19, 34–38.

Shyrobokov, V., Jankowski, D., & Dement, G. (2009). Mikrobna ekologija ljudyny z kol'orovym atlasom [Microbial ecology of the human with colored atlas]. Chervona Ruta, Kyiv (in Ukranian).

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. >> doi.org/10.1016/j.jcis.2004.02.012

Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6(3), 199–210. >> doi.org/10.1038/nrmicro1838

Trevors, J. T. (2011). Viable but non-culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells. Journal of Microbiological Methods, 86(2), 266–273. >> doi.org/10.1016/j.mimet.2011.04.018

Vadillo-Rodríguez, V., Busscher, H. J., Norde, W., De Vries, J., & Van Der Mei, H. C. (2004). Dynamic cell surface hydrophobicity of Lactobacillus strains with and without surface layer proteins. Journal of Bacteriology, 186(19), 6647–6650. >> doi.org/10.1128/JB.186.19.6647–6650.2004

Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P., & Ghigo, J. M. (2006). Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proceedings of the National Academy of Sciences, 103(33), 12558–12563. >> doi.org/10.1073/pnas.0605399103

Van der Mei, H. C., Van de Belt-Gritter, B., Pouwels, P. H., Martinez, B., & Busscher, H. J. (2003). Cell surface hydrophobicity is conveyed by S-layer proteins – a study in recombinant lactobacilli. Colloids and Surfaces B: Biointerfaces, 28(2), 127–134. >> doi.org/10.1016/S0927-7765(02)00144-3

Varma, P., Dinesh, K. R, Menon, K. K, Biswas, R. (2010). Lactobacillus fermentum isolated from human colonic mucosal biopsy inhibits the growth and adhesion of enteric and foodborne pathogens. Journal of Food Science, 75, M546–M551. >> doi.org/10.1111/j.1750-3841.2010.01818.x

Varma, P., Nisha, N., Dinesh, K. R., Kumar, A. V., & Biswas, R. (2011). Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Molecular Microbiology and Biotechnology, 20(3), 137–143. >> doi.org/10.1159/000328512

Velraeds, M. M., Van der Mei, H. C., Reid, G., & Busscher, H. J. (1996). Phy¬sicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids and Surfaces B: Biointerfaces, 8(1-2), 51–61. >> doi.org/10.1016/S0927-7765(96)01297-0

Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H., & Whitman, W. (eds.) (2009). Bergey's manual of systematic bacteriology: Vol. 3: The Firmicutes. Springer. >> doi.org/10.1007/978-0-387-68489-5

Wang, C.-Y., Wang, H.-C., Li, J.-M., Wang, J.-Y., Yang, K.-C., & Ho, Y.-K. (2010). Invasive infections of Aggregatibacter (Actinobacillus) actinomyce¬temcomitans. Journal of Microbiology, Immunology and Infection, 43(6), 491–497. >> doi.org/10.1016/s1684-1182(10)60076-x

Weekly, B. S. (1975). Jelektronnaja mikroskopija dlja nachinajushhih [Electron microscopy for beginners]. Mir, Moscow (in Russian).

Weinstein, R. A., & Darouiche, R. O. (2001). Device-associated infections: A macroproblem that starts with microadherence. Clinical Infectious Diseases, 33(9), 1567–1572. >> doi.org/10.1086/323130

Wertheim, H. F., Melles, D. C., Vos, M. C., van Leeuwen, W., van Belkum, A., Verbrugh, H. A., & Nouwen, J. L. (2005). The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, 5(12), 751–762. >> doi.org/10.1016/S1473-3099(05)70295-4

Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science, 295(5559), 1487–1487. >> doi.org/10.1126/science.295.5559.1487

Younes, J. A., van der Mei, H. C., van den Heuvel, E., Busscher, H. J., & Reid, G. (2012). Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli. PloS One, 7(5), e36917. >> doi.org/10.1371/journal.pone.0036917

Zandri, G., Pasquaroli, S., Vignaroli, C., Talevi, S., Manso, E., Donelli, G., & Biavasco, F. (2012). Detection of viable but non-culturable staphylococci in biofilms from central venous catheters negative on standard microbiological assays. Clinical Microbiology and Infection, 18(7), E259–E261. >> doi.org/10.1111/j.1469-0691.2012.03893.x

How to Cite
Lavryk, G., Korniychuk, O., & Tymkiv, M. (2017). Ultrastructural changes in biofilm forms of staphylococci cultivated in a mixed culture with lactobacilli. Regulatory Mechanisms in Biosystems, 8(1), 98-103. https://doi.org/10.15421/021717