Features of gas exchange and use of reserve substances in pumpkin seedlings in conditions of skoto- and photomorphogenesis under the influence of gibberellin and chlormequat-chloride

  • I. V. Poprotska Vinnytsya State Pedagogical University named after Mykhailo Kotsyubynsky
  • V. G. Kuryata Vinnytsya State Pedagogical University named after Mykhailo Kotsyubynsky
Keywords: Cucurbita pepo L., source-sink system, retardants, hormonal regulation, seed germination


We investigated the effect of gibberellin and the antigibberellic agent chlormequat-chloride on gas exchange and use of reserve substances in pumpkin seedlings during germination in the light and in the dark. We established that an artificial strengthening or growth inhibition of pumpkin seedlings in conditions of skotomorphogenesis caused an increase in of respiration intensity. Gibberellin treatment increased the proportion of assimilation processes in carbon dioxide gas exchange of seedlings, and growth inhibition by retardant caused an increase in respiratory costs when the nutrition type switches in the light from heterotrophic to autotrophic. The formation by seedlings of the demand for reserve assimilates from cotyledons was largely determined by change of activity of subapical meristems, which is manifested in the acceleration of seed germination, enhancing of histogenesis for the actions of gibberellin and in the weakening of these processes under the influence of retardants. Reserve substances used both oil and nitrogen-containing compounds. The content of protein nitrogen in pumpkin cotyledons decreased more in the light than in the dark, moreover growth inhibition by the retardant slowed down and growth increase by gibberellin accelerated this process both in conditions of photomorphogenesis and skotomorphogenesis. 


Bala, M., Gupta, S., Gupta, N. K., & Sangha, M. K. (2013). Practical in plant physiology and biochemistry. Scientific Publisher, Jodhpur.

Bonelli, L. E., Monzon, J. P., Cerrudo, A., Rizzalli, R. H., & Andrade, F. H. (2016). Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research, 198, 215−225. >> doi.org/10.1016/j.fcr.2016.09.003

De Wit, M., & Pierik, R. (2016). Photomorphogenesis and photoreceptors. Canopy Photosynthesis: From Basics to Applications, 42, 171–186. >> doi.org/10.1007/978-94-017-7291-4_6

Franklin, K. A. (2016). Photomorphogenesis: Plants feel blue in the shade. Current Biology, 26(24), R1275–R1276. >> doi.org/10.1016/j.cub.2016.10.039

Golovatskaya, I. F., & Karnachuk, R. А. (2007). Dinamika rosta rastenij i soderzhanie endogennyh fitogormonov v processe skoto- i fotomorfo¬geneza fasoli [Dynamics of growth and the content of endogenous phytohormones during kidney bean scoto- and photomorphogenesis]. Fiziologija rastenij, 54(3), 461–468 (in Russian). >> doi.org/10.1134/S102144370703017X

Hedden, P., & Thomas, S. G. (2016). The gibberellins. Annual Plant Reviews, 49. John Wiley & Sons. >> doi.org/10.1002/9781119210436

Hornitschek, P., Kohnen, M. V., Lorrain, S., Rougemont, J., Ljung, K., López-Vidriero, I., Franco-Zorrilla, J. M., Solano, R., Trevisan, M., Pradervand, S., Xenarios, I., & Fankhauser, C. (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. The Plant Journal, 71(5), 699–711. >> doi.org/10.1111/j.1365-313X.2012.05033.x

Humplík, J. F., Turečková, V., Fellner, M., & Bergougnoux, V. (2015). Spatio-temporal changes in endogenous abscisic acid contents during etiolated growth and photomorphogenesis in tomato seedlings. Plant Signaling and Behavior, 10(8), e1039213. >> doi.org/10.1080/15592324.2015.1039213

Kiriziy, D. A., Stasyk, О. О., Pryadkina, G. А., & Shadchyna, Т. М. (2014). Fotosintez. Т. 2. Assimilyatsiya СО2 i mehanizmy jejyo regulyatsii. Logos, Kiev (in Russian).

Kumar, S., Ghatty, S., Satyanarayana, J., Guha, A., Chaitanya, B., & Reddy, A. R. (2012). Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown Camelina sativa L. Crantz. BMC Research Notes, 5, 137. >> doi.org/10.1186/1756-0500-5-137

Kuriata, V. G., Rohach, V. V., Rohach, T. I., & Khranovska, T. V. (2016). The use of antigibberelins with different mechanisms of action on morphogenesis and production process regulation in the plant Solanum melongena (Solanaceae). Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 230–234. >> doi.org/10.15421/011628

Kuryata, V. G. (2009). Retardanty – modyfikatory gormonalnogo statusu roslyn. Fiziologija roslyn: Problemy ta perspektyvy rozvytku. Т. 1. Logos, Kyiv (in Ukrainian).

Kuryata, І. V., & Kiriziy, D. А. (2008). Regulyatsiya donorno-aktseptornyh vid¬nosyn u systemi depo asymilyativ- rist u prorostkiv garbuza pid vplyvom giberelinu і hlormekvathlorydu za umov skoto- і fotomorfogenezu [Regu¬lation of sourse-sink relations in the system reserve assimilates-growth in cucurbit (Cucurbita pepo L.) under the effect of gibberellin and chlorme¬quate chloride in scoto- and photomorphogenesis conditions]. Fiziologija i biohimija kul’turnih rastenij, 40(5), 448–457 (in Ukrainian).

Kutschera, U., & Briggs, W. R. (2013). Seedling development in buckwheat and the discovery of the photomorphogenic shade-avoidance response. Plant Biology, 15(6), 931–940. >> doi.org/10.1111/plb.12077

Ljung, K., Nemhauser, J. L., & Perata, P. (2015). New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology, 25, 130–137. >> doi.org/10.1016/j.pbi.2015.05.022

Matysiak, K., & Kaczmarek, S. (2013). Effect of chlorocholine chloride and triazoles – tebuconazole and flusilazole on winter oilseed rape (Brassica napus var. oleifera L.) in response to the application term and sowing density. Journal of Plant Protection Research, 53(1), 79–88. >> doi.org/10.2478/jppr-2013-0012

Minguet, E. G., Alabadi, D., & Blázquez, M. A. (2014). Gibberellin implica¬tion in plant growth and stress responses. Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications, 119–161. >> doi.org/10.1007/978-1-4939-0491-4_5

Poprotska, І. V. (2014). Zminy v polisaharydnomu kompleksi klitynnyh stinok sim’yadolej prorostkiv garbuza za riznoyi napruzhenosti donorno-aktseptornyh vidnosyn v protsesi prorostannya [Changes in polysaccharide complex of cell walls of the pumpkin seedlings cotyledons under different level of source-sink relations during germination]. Fiziologiya i Biohimiya Kulturnykh Rastenij, 46(3), 190–195 (in Ukrainian).

Ramburan, S., & Greenfield, P. L. (2007). Use of ethephon and chlormequat chloride to manage plant height and lodging of irrigatend barley (cv. Puma) when hight rates of N-fertiliser are applied. South African Journal of Plant and Soil, 24(4), 181–187. >> doi.org/10.1080/02571862.2007.10634806

Rogach, V. V., & Rogach, T. I. (2015). Vplyv syntetychnyh stymulyatoriv rostu na morfofiziologichni harakterystyky ta biologichnu produktyvnist’ kul’tury kartopli [Influence of synthetic growth stimulators on morphological and physiological characteristics and biological productivity of potato culture]. Visnyk of Dnipropetrovsk University. Biology, Ecology, 23(2), 221–224 (in Ukrainian). >> doi.org/10.15421/011532

Rogach, V. V., Poprotska, I. V., & Kuryata, V. G. (2016). Diya giberelinu ta retar¬dantiv na morfogenez, fotosyntetychnyj aparat і produktyvnist’ kartopli [Effect of gibberellin and retardants on morphogenesis, photosynthetic apparatus and productivity of the potato]. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 416–419 (in Ukrainian). >> doi.org/10.15421/011656

Sang-Kuk, K., & Hak-Yoon, K. (2014). Effects of gibberellin biosynthetic inhibi¬tors on oil, secoisolaresonolodiglucoside, seed yield and endogenous gibbe¬rellin content in flax. Korean Journal of Plant Resources, 27(3), 229–235. >> doi.org/10.7732/kjpr.2014.27.3.229

Savage, J. A., Haines, D. F., & Holbrook, N. M. (2015). The making of giant pumpkins: How selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant, Cell and Environment, 38(8), 1543–1554. >> doi.org/10.1111/pce.12502

Sugiura, D., Sawakami, K., Kojima, M., Sakakibara, H., Terashima, I., & Tateno, M. (2014). Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Functional Plant Biology, 42(4), 397–409. >> doi.org/10.1071/FP14212

VanHook, A. M. (2016). Rapidly inhibiting ethylene signaling with light. Science Signaling, 9(458), 294. >> doi.org/10.1126/scisignal.aam5611

Wang, Y., Gu, W., Xie, T., Li, L., Sun, Y., Zhang, H., Li, J., & Wei, S. (2016). Mixed compound of DCPTA and CCC increases maize yield by improving plant morphology and upregulating photosynthetic capacity and antioxidants. PLoS One, 11(2), e0149404. >> doi.org/10.1371/journal.pone.0149404

Wu, S.-H. (2014). Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Annual Review of Plant Biology, 65, 311–333. >> doi.org/10.1146/annurev-arplant-050213-040337

Yu, S. M., Lo, S. F., & Ho, T. D. (2015). Source – sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20(12), 844–857. >> doi.org/10.1016/j.tplants.2015.10.009

Zhang, D., Jing, Y., Jiang, Z., & Lin, R. (2014). The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. The Plant Cell, 26(6), 2472–2485. >> doi.org/10.1105/tpc.113.121848

How to Cite
Poprotska, I. V., & Kuryata, V. G. (2017). Features of gas exchange and use of reserve substances in pumpkin seedlings in conditions of skoto- and photomorphogenesis under the influence of gibberellin and chlormequat-chloride. Regulatory Mechanisms in Biosystems, 8(1), 71-76. https://doi.org/10.15421/021713