The dynamics of biofilm overgrowth of Enterococcus faecalis

  • E. A. Synetar State Institution “L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of NAMS of Ukraine”
  • O. I. Brych State Institution “L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of NAMS of Ukraine”
Keywords: catheter-associated infections, silicone catheter, bacteria, adhesion

Abstract

The nature of microorganisms can exist in two physiological forms that allow microbes to preserve livelihoods and continue their life cycle. The first is the population of planktonic forms of microorganisms which live freely in the environment with the developed systems of active and passive mobility, contributing to the rapid spread of a liquid medium. The second forms are those expressing specific mechanisms of adhesion, and able to aggregate on biogenic and abiogenic surfaces. Even in the deep sea vast number of species of bacteria live in their inherent horizons. Thus, the study of biofilms tube life support systems, diagnostic, laparoscopic devices during prolonged catheterization of the urinary system is of great practical, theoretical and biological significance in medicine and biology. For almost 20% of catheter-associated infections antibiotic therapy is uneffective, particularly through the formation of microbial biofilms on the surface of urinary catheters. We characterized the dynamics of biofilm growth of Enterococcus faecalis on fragments ofsilicone catheter. The study was conducted using bacteriological and electron microscopic techniques. Study of the dynamics of biofilm formation was performed using E. faecalis strain 49, which is isolated from the urine of persons who are not the patients of the urological department of resuscitation and intensive therapy. Using scanning electron microscopy we have established dynamics and phase attachment ofE. faecalis bacteria and subsequent overgrowth of silicone catheter surface. Aftercalculations, index of adhesion on the turbulent wall amounted to 0,49 microbial cells. That is, every other cell of the monolayer adhered on the catheter. Area of biofilm growth of E. faecalis after 24 hour incubation was equal to 51.5 μm2, in 48 hours it increased to 231.5 μm2. After 72 hours of incubation we recorded the increase in biofilm growth of E. faecalisto 1922,8 μm2. The results were obtained on fragments of catheters, immersed in broth in vertical position. This orientation has excluded the deposition of germs by sedimentation, i.e. by gravity. It is known that after the logarithmic phase and achieving M-concentration for a few hours microbes starttodie and their possible deposition mayoccur. Therefore, our results confirm the formation of biofilm, instead of sedimentation of dead microbes. Our study shows that biofilm is “the way of overgrowth on artificial and natural surfaces by microorganisms that are kept on them by exopolymer membranes”.

References

Baldassarri, L., Creti, R., Montanaro, L., Orefici, G., Arciola, C.R., 2005. Pathogenesis of implant infections by enterococci. Int. J. Artif. Organs. 28(11), 1101–1109.

Coenye, T., Nelis, H.J., 2010. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Meth. 83, 89–105. >> doi: 10.1016/j.mimet.2010.08.018

Dobrohotskyy, A.N., Khomyakov, J.N., Khomyakov, T.I., 2009. Epydemyolohycheskoe znachenye formyrovaniya byoplenok v tehnycheskyh systemah [Epidemiological importance of biofilm formation in technical system]. Life Without Dangers. Health. Prevention. Longevity 1, 78–81 (in Russian).

Donlan, R.M., 2011. Biofilm elimination on intravascular catheters: Important considerations for the infectious disease practitioner. J. Clin. Infect. Dis. 52(8), 1038–1045. >> doi: 10.1093/cid/cir077

Donlon, R.M., Costerton, J.W., 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193. >> doi: 10.1128/CMR.15.2.167-193.2002

Dunne, W.M., 2002. Bacterial adhesion: Seen any good biofilms lately? Clin. Microbiol. Rev. 15(2), 155–166. >> doi: 10.1128/CMR.15.2.155-166.2002

Galkin, M.B., 2013. Formuvannya bioplivky Pseudomonas aeruginosa za prysutnosti vismutovyh kompleksyv porfyrinyv [Pseudomonas aeruginosa biofilm formation in the presence of bismuth complexes of porphyrins]. Instytut Mikrobiologii' i Virusologii' im. D.K. Zabolotnogo, Kyiv (in Ukrainian).

Garsin, D.A., Willems, R.J., 2010. Insights into the biofilm lifestyle of enterococci. Virulence 1(4), 219–221. >> doi: 10.4161/viru.1.4.12073

Hall-Stoodley, L., Stoodley, L.P., 2009. Evolving concepts in biofilm infections. Cell Microbiol. 11(7), 1034–1043. >> doi: 10.1111/j.1462-5822.2009.01323.x

Hooton, T.M., Bradley, F.S., Cardenas, D.D., 2010. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International clinical practice guidelines from the infectious diseases society of America. Clin. Infect. Dis. 50, 625–663. >> doi: 10.1086/650482

Hooton, T.M., Stamm, W.E., 1997. Diagnosis and treatment of uncomplicated urinary tract infection. Infect. Dis. Clin. North. Am. 11(3), 551–581. >> doi: 10.1016/S0891-5520(05)70373-1

Jacobsen, S.M., Stickler, D.J., Mobley, H.L.T., Shirtliff, M.E., 2008. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21(1), 26−59. >> doi: 10.1128/CMR.00019-07

Jacobsen, T.H., 2011. Qualitative and quantitative determination of quorum-sensing inhibition in vitro. Quorum-sensing: Methods and protocols. J. Meth. Mol. Biol. 692, 253–263. >> doi: 10.1007/978-1-60761-971-0_18

Janovs'ka, V.V., 2009. Biologichni vlastyvosti enterokokiv jak zbudnykiv zapal'nyh procesiv sechovyvidnyh shljahiv [Biological properties of enterococci pathogens as inflammation of the urinary tract]. Instytut Epidemiologii ta Infekcijnyh Hvorob im. L.V. Gromashevs'kogo NAMN Ukrai'ny, Kyiv (in Ukrainian).

Kostrikova, J.A., 2011. Enterococcus faecalis jak potencijnyj infekcijnyj patogen v klinici vnutrishn'oi' medycyny [Enterococcus faecalis infection as a potential pathogen in clinical internal medicine]. Actual Problems of Modern Medicine 36(4), 139–141 (in Ukrainian).

Lysen'ki, P., Mykuc'ki, J., Sulik, A., 2005. Enterokoky: Stari bakterii', novi problemy [Enterococci: Old bacteria new problems]. Laboratory Diagnosis 3, 23–35 (in Ukrainian).

Makushenko, O.S., 2002. Enterokoky: Ekologichne ta klinichne znachennja v suchasnyh umovah [Enterococci, environmental and clinical significance in modern conditions]. Laboratory Diagnosis 3, 43−45 (in Ukrainian).

Mel'nikov, V.G., 2010. Poverhnostnye struktury grampozitivnyh bakterij v mezhkletochnom vzaimodejstvii i pljonkoobrazovanii [Surface structure of gram-positive bacteria in cell-cell interactions and biofilm]. Journal of Microbiology, Epidemiology and Immunobiology 2, 119–123 (in Russian).

Mironenko, L.G., 2009. Stabil'nost' biologicheskih svojstv Enterococcus faecium v processe kriokonservirovanija [The stability of the biological properties of Enterococcus faecium in the process of cryopreservation]. Metody Oderzhannja Chystyh Kul'tur Mikroorganizmiv ta I'h Dovgostrokovogo Zberigannja v Kolekcijah. Znannja Ukrai'ny, Kyiv (in Ukrainian).

Mohamed, J.A., Huang, D.B., 2007. Biofilm formation by enterococci. J. Med. Microbiol. 56(12), 1581–1588. >> 10.1099/jmm.0.47331-0

Mohamed, J.A., Huang, W., Nallapareddy, S.R., Teng, F., Murray, B.E., 2004. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect. Immun. 72(6), 3658–3663. >> doi: 10.1128/IAI.72.6.3658-3663.2004

Mohamed, J.A., Murray, B.E., 2005. Lack of correlation of gelatinase production and biofilm formation in a large collection of Enterococcus faecalis isolates. J. Clin. Microbiol. 43(10), 5405–5407. >> doi: 10.1128/JCM.43.10.5405-5407.2005

Pace, J.L., Rupp, M.E., Finch, R.G., 2006. Biofilms, infection, and antimicrobial therapy. Taylor Francis Group. >> doi: 10.1201/9781420028232

Pascual, A., 2002. Pathogenesis of catheter-related infections: Lessons for new designs. Clin. Microbiol. Infect. 8(5), 256–264. >> doi: 10.1046/j.1469-0691.2002.00418.x

Polishhuk, O.I., Mironenko, L.G., Glushkevych, T.G., Janovs'ka, V.V., Pokas, O.V., Peretjatko, O.G., 2009. Metody vydilennja ta identyfikacii' enterokokiv [The methods of isolation and identification of enterococci]. Znannja Ukrai'ny, Kyiv (in Ukrainian).

Saint, S., Chenoweth, C.E., 2003. Biofilms and catheter-associated urinary tract infections. Infect. Dis. Clin. North. Am. 17, 411–432. >> doi: 10.1016/S0891-5520(03)00011-4

Salmanov, A.G., Marijevs'kyj, V.F., Bojko, V.V., Ioffe, I.V., Taraban, I.A., 2012. Antybiotykorezystentnist' v hirurgii [Antibiotic resistance in surgery]. НТМТ, Kharkov (in Ukrainian).

Seno, Y., Kariyama, R., Mitsuhata, R., Monden, K., Kumon, H., 2005. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. Acta. Med. Okayama 59(3), 79–87.

Sernjak, J.P., Fukszon, A.S., Roshhyn, J.V., Kryshtopa, M.V., 2005. Problema kateter-assocyyovannyh infekcyj mochevogo trakta y bakteryal'nyh byologycheskyh plenok v sovremennoj urology [The problem of catheter-associated urinary tract infections and bacterial biological biofilm in modern urology]. Zdorov'e Muzhchyny 2, 40–44 (in Russian).

Synetar, E.O., Avdjejeva, L.V., Skoryk, M.A., Brych, O.I., 2014. Formuvannja bioplivky Candida albicans na poverhni medychnyh kateteriv: Doslidzhennja in vitro [Candida albicans biofilm formation on the surface of medical catheters: An in vitro study]. Dovkillja ta Zdorov’ja 68(1), 28−32 (in Ukrainian).

Zhalko-Tytarenko, V.P., 1981. Mehanyzm prykreplenyja shygell k slyzystoj obolochke kyshechnyka [Shigella attachment mechanism to the intestinal mucosa]. Journal of Microbiology, Epidemiology and Immunobiology 8, 73–88 (in Russian).

Published
2015-08-06
How to Cite
Synetar, E. A., & Brych, O. I. (2015). The dynamics of biofilm overgrowth of Enterococcus faecalis. Regulatory Mechanisms in Biosystems, 6(2), 146-150. https://doi.org/10.15421/021526