Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses

  • H. N. Shiyntum Oles Honchar Dnipropetrovsk National University
  • G. A. Ushakovа Oles Honchar Dnipropetrovsk National University
Keywords: Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses


Cadmiumclassified as a major carcinogen is considered a poisonous and unwanted heavy metal to a lot of tissues in many organisms. Of many publications already available, the general consensus is that the cadmium attenuating element is metallothionein (MT) through its interchangeable mechanism with Zn triggered by the presence of Cd, providing binding sites for Cd ions. MT was first discovered in the kidney cortex of the horse; it represents a low molecular weight protein, rich in cysteine residues which effectively bind with metals. Its functions consist in detoxification of heavy metals like mercury, arsenic, cadmium, homeostasis of essential metals including copper and zinc, anti-oxidation against reactive oxygen species, protection against DNA damage, oxidative stress, cell survival, angiogenesis, apoptosis, and increase of proliferation. In this work, we sought to highlight the protective function of MT in the brain and serum of rats by means of detoxification under induced effects of controlled Cd doses. We have done this by exposing Wistar rats to Cd at different doses in drinking water at different time intervals. In two independent experiments, 58 rats were subjected to 0.1 or 1.0 µg Cd2+/kg of body weight for 15 or 36 days under different conditions. The obtained data indicates the different functioning systems for the brain and the blood for MT metabolism under Cd effect. Our results indicate significant loss of metallothionein level in the brain and important increases in the amount of MT in serum proving that even minimal ingestion of toxic Cd is enough to trigger the release of MT protein in blood. 


Babula, P., Masarik, M., Adam, V., Eckschlager, T., Stiborova, M., Trnkova, L., Skutkova, H., Provaznik, I., Hubalekadi, J., Kizek, R., 2012. Mammalian metallothioneins: Properties and functions. Metallomics 4, 739–750. >> doi: 10.1039/c2mt20081c

Baird, S.K., Kurz, T., Brunk, U.T., 2006. Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem. J. 394, 275–283. >> doi: 10.1042/BJ20051143

Braga, M.M., Dick, T., de Oliveira, D.L., Scopel-Guerra, A., Mussulini, B.H.M., Souza, D.O., da Rocha., J.B.T., 2015. Evaluation of zinc effect on cadmium action in lipid peroxidation and metallothionein levels in the brain. Toxicology Reports 2, 858–863. >> doi: 10.1016/j.toxrep.2015.05.014

Coyle, P., Philcox, J.C., Carey, L.C., Rofe, A.M., 2002. Metallothionein: The multipurpose protein. Cell Mol. Life Sci. 59(4), 627–647. >> doi: 10.1007/s00018-002-8454-2

Dudley, E.R., Gammal, L.M., Klaassen, C.D., 1985. Cadmium-induced hepatic and renal injury in chronically exposed rats: Likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol. Appl. Pharmacol. 77, 414–426. >> doi: 10.1016/0041-008X(85)90181-4

Françoise, V.-H., Amélie, C., Catherine, G.-F., 2014. Metallothionein mRNA induction is correlated with the decrease of DNA strand breaks in cadmium exposed zebra mussels. Mutat. Res.-Gen. Tox. En. 766, 10–15.

Higashimoto, M., Isoyama, N., Ishibashi, S., Inoue, M., Takiguchi, M., Suzuki, S., Onishi, Y., Sato, M., 2009. Tissue dependent preventive effect of metallothionein against DNA damage in dyslipidemic mice under repeated stresses of fasting or restraint. Life Sci. 84, 569–575. >> doi: 10.1016/j.lfs.2009.01.022

Hogervorst, J., Plusquin, M., Vangronsveld, J., Nawrot, T., Cuypers, A., Van Hecke, E., Roels, H.A., Carleer, R., Staessen, J.A., 2007. House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ. Res. 103(1), 30–37. >> doi: 10.1016/j.envres.2006.05.009

Kagi, J.H., Valee, B.L., 1960. Metallothionein: A cadmium- and zinc-containing protein from equine renal cortex. J. Biol. Chem. 235, 3460–3465. >> doi: 10.1007/978-3-0348-6493-0

Kar, R., Garg, S., Halder, S., Galav, V., Chandra, N., Mehndiratta, M., 2015. Cadmium exposure induces oxidative stress by decreasing expression of antioxidant enzymes in mice liver. Int. J. Clin. Biochem. Res. 2(2), 89–96.

Klaassen, C.D., Liu, J., Diwan, B.A., 2009. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 238(3), 215–220. >>doi: 10.1016/j.taap.2009.03.026

Kovalchuk, Y.P., Ushakova, G.A., Shiyntum, H.N., Kot, Y.G., 2015. Distribution of the contents of S100b protein in different parts of the rat brain under the influence of cadmium. Theoretical and Applied Problems of Modern Science and Education, Kursk, 97–101.

Kowalska, K., Bizon, A., Zalewska, M., Milnerowicz, H., 2015. The influence of biological and environmental factors on metallothionein concentration in the blood. J. Trace Elem. Med. Biol. 29, 99–103. >> doi: 10.1016/j.jtemb.2014.05.001

Moleirinho, A., Carneiro, J., Matthiesen, R., Silva, R.M., Amorim, A., Azevedo, L., 2011. Gains, losses, and changes of function after gene duplication: study of the metallothionein family. PLoS One 6(4), e18487. >> doi: 10.1371/journal.pone.0018487

Nair, A.R., DeGheselle, O., Smeets, K., van Kerkhove, E., Cuypers, A., 2013. Cadmium-induced pathologies: Where is the oxidative balance lost (or not)? Int. J. Mol. Sci. 14(3), 6116–6143. >> doi: 10.3390/ijms14036116

Petrlová, J., Blaštík, O., Průša, R., Kukačka, J., Potěšil, D., Mikelová, R., Adam, V., Zehnálek, J., Kizek, R., 2005. Using of electrochemical methods for studying of metallothionein content in the human blood serum of a patient poisoned by lead and treated by platinum. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 149(2), 485–488. >> doi: 10.5507/bp.2005.086

Qu, W., Pi, J., Waalkes, M.P., 2013. Metallothionein blocks oxidative DNA damage in vitro. Arch. Toxicol. 87(2), 311–321. >> doi: 10.1007/s00204-012-0927-y

Shiyntum, H.N., Ushakova, G.A., 2015. Distribution of metallothioneins I & II in the rat brain under Cd-inhalation. Proceedings of First International Workshop “Actual problems of fundamental science”, Luck, 334–337.

Vasak, M., 2005. Advances in metallothionein structure and functions. J. Trace Elem. Med. Biol. 19(1), 13–17.

Waalkes, M.P., 2003. Cadmium carcinogenesis. Mutat. Res. 533(1–2), 107–120. >> doi: 10.1016/j.mrfmmm.2003.07.011

Wang, J., Zhu, H., Liu, X., Liu, Z., 2014. N-acetylcysteine protects against cadmium-induced oxidative stress in rat hepatocytes. J. Vet. Sci. 15(4), 485–493. >> doi: 10.4142/jvs.2014.15.4.485

Wang, W.-C., Mao, H., Ma, D.-D., Yang, W.-X., 2014. Characteristics, functions, and applications of metallothionein in aquatic vertebrates. Front. Mar. Sci. 1, 34. >> doi: 10.3389/fmars.2014.00034

Yang, H., Shu, Y., 2015. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int. J. Mol. Sci. 16(1), 1484–1494. >> doi: 10.3390/ijms16011484

Zalups, R.K., Ahmad, S., 2003. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol. 186(3), 163–188. >> doi: 10.1016/S0041-008X(02)00021-2

How to Cite
Shiyntum, H. N., & UshakovаG. A. (2015). Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses. Regulatory Mechanisms in Biosystems, 6(2), 103-107.