Microbiocenoses of Lviv sewage at various stages of purification

  • K.V. Sholiak Ivan Franko Lviv National University, Lviv, Ukraine
  • S.О. Hnatush Ivan Franko Lviv National University, Lviv, Ukraine
  • T.B. Peretyatko Ivan Franko Lviv National University, Lviv, Ukraine
  • S.P. Gudz Ivan Franko Lviv National University, Lviv, Ukraine

Abstract

The aim of this work was to investigate some physiological groups of microorganisms which are components of wastewater microbiocenoses. Microorganisms were grown in Petri dishes containing 20–30 ml agar selective medium and in 25 ml tubes at a temperature +30 ºC. The selective media were: wort agar for microscopic fungi and yeasts, Hutchinson medium for the cellulose-destroying microorganisms, starch-ammonium medium for microorganisms that can utilize mineral nitrogen forms, Postgate B medium for sulfate-reducing bacteria, Vinogradsky medium for nitrifying bacteria, Ashby medium for the nitrogen-fixing bacteria, Chapek medium for the actinomycetes. 1 mM Cr (VI) (104 mg/l) in the form of К2Cr2О7 was added to the medium. The number of colonies was determined by the Koch method. We studied wastewater microbocenoses of Lviv city at various stages of purification. We showed that the quantitative and qualitative composition of microorganisms differed significantly in primary and secondary clarifiers, the aerotank and sludge at different stages of sewage treatment. In the initial stages of purification, in the primary sump, bacteria that reached the treatment plant with sewage were found. Nitrifying bacteria (7.1 × 106colony forming units (CFU)/ml), nitrogen-fixing bacteria (9.0 × 106CFU/ml), and fungi (3.4 × 106 CFU/ml) dominated. The qualitative composition of microorganisms in primary clarifiers and the aerotank was similar, but their number in the aerotank was significantly higher than in the primary sump: 1.5 × 107 CFU/ml of nitrifying bacteria, 1.4 × 107CFU/ml of nitrogen-fixing bacteria, 6.7 × 106CFU/ml of fungi. The ratio of different physiological groups of microorganisms in the active sludge changed significantly. The predominant microorganisms were those that assimilate mineral forms of nitrogen (65%), their number was 1.6 × 108CFU/ml. In the secondary clarifier, the largest group was cellulose-destroying microorganisms (6.0 × 105CFU/ml). However, their numbers in the secondary sump were lower compared to their numbers in the aerotank and sludge (1.5–3.9 × 106CFU/ml). Among the representatives of various physiological groups of bacteria a significant number of chromium-resistant strains was detected. The largest number of chromium-resistant strains was detected in the active sludge and aerotank, which is probably due to the recirculation of microorganisms in the wastewater treatment. The highest percentage of Cr (VI) resistant microorganisms was among sulphate-reducing bacteria. An increase in the percentage of chromium-resistant microorganisms occurred together with the lowering of the total number of microorganisms of a certain physiological group. These microorganisms could prove useful for the development of biotechnological methods wastewater treatment to eliminate chromium compounds, which are highly toxic to living organisms.

References

Antipchuk, A.F., Kіrejeva, І.J., 2005. Vodna mikrobiologija [Aquatic microbiology]. Коndor, Kyiv (in Ukrainian).

Brioukhanov, A.L., 2008. Negemovye zhelezosoderzhashhie belki kak al’ternativnaja sistema antiokislitel’noj zashhity v kletkah strogo anaerobnyh mikroorganizmov [Non-heme iron proteins as an alternative antioxidant defense system in cells strictly anaerobic microorganisms]. Prikladnaja biohimija i Mikrobiologija 44(4), 373–386 (in Russian).

Brioukhanov, A.L., Netrusov, A.I., 2007. Ajerotolerantnost’ strogo anajerobnyh mikroorganizmov: Faktory zashhity ot okislitel’nogo stressa [Aerotolerant in strictly anaerobic microorganisms: Protective factors against oxidative stress]. Prikladnaja Biohimija i Mikrobiologija 43(6), 635–652 (in Russian).

Brioukhanov, A., Pieulle, L., Dolla, A., 2010. Antioxidative defense systems of anaerobic sulfate-reducing microorganisms. Current Research, Technology and Educatiion Topics in Applied Microbiology and Microbial Biotechnology 149–159.

Dallaeva, D.S., 2013. Osobennosti mikroorganizmov aktivnogo ila [Features of microorganisms of activated sludge]. Global’nyj Nauchnyj Potencial 5(26), 7–9 (in Russian).

Egorov, N.S., 1995. Rukovodstvo po prakticheskim zanjatijam po mikrobiologii [Guide to almost classes in microbiology]. MGU, Moscow.

Gal’perina, A.R., 2011. Aborigennye mikroorganizmy zamazuchennyh stochnyh vod kak osnova ekologicheskih biotehnologij [Aboriginal microorganisms of oil polluted waste water as a basis for ecological biotechnology]. Izvestija Samarskogo Nauchnogo Centra Rossijskoj Akademii Nauk 13(5/3), 132–135 (in Russian).

Gerhardt, F., 1983. Metody obshhej bakteriologii [Methods for general bacteriology]. Mir, Moscow (in Russian).

Golub, N.M., 2011. Vlijanie veshhestv-zagrjaznitelej, soderzhashhihsja v stochnyh vodah, na zhiznedejatel’nost’ aktivnogo ila [Influence of substances pollutants contained in wastewater on the life of the activated sludge]. Vesnik Brjesckaga Universitjeta Seryja 5 Himija Bijalogija Navuki ab Zjamli 1, 14–19 (in Russian).

Karoza, S.J., 2008. Vlijanie ksenobiotikov stochnyh vod na sostojanie aktivnogo ila ochistnyh sooruzhenij [Influence of xenobiotics on the state of sewage activated sludge treatment facilities]. Materialy III Mezhdunar. nauch. konf. "Ksenobiotiki i zhivye sistemy" [Proc. of the III Int. scientific. conf. "Xenobiotics and Living Systems"]. Minsk, 52–54 (in Russian).

Korіnovs’ka, O.M., Grishko, V.M., 2011. Chutlivіst’ mіkromіcetіv do vazhkih metalіv [Micromicetes sensitivity to heavy metals]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Med. 2(2), 49–55 (in Ukrainian).

Nenasheva, M.N., Korobov, V.J., 2009. Izuchenie vidovogo

raznoobrazija gidrobiontov zakrytoj ekosistemy pri besstochnoj sisteme vodosnabzhenija iskusstvennogo vodoema dlja razvedenija ryby [The study of species diversity in aquatic ecosystems closed undrained water supply system of an artificial pond for fish farming]. Vestnik OGU 6, 275–277 (in Russian).

Oliferchuk, V.P., Gurla, U.R., Senjuk, A.I., Hodzins’ka, O.R., 2008. Zastosuvannja mikromicetiv dlja ochishhennja stichnih vod za dopomogoju biokonvejera [Application of micromycetes for wastewater treatment using bioconveyer]. Naukovij Visnik NLTU Ukrai’ni 8(3), 22–29 (in Ukrainian).

Sharapova, I.V., Hicova, L.N., 2007. O strukture i funkcional’nom znachenii protozojnogo kompleksa aktivnogo ila aerotenkov ochistnyh sooruzhenij malogo goroda [The structure and functional significance of protozoan complex activated sludge treatment facilities aerotenkov of small city]. Vestnik VGU: Chimija. Biologija. Farmacija 2, 123–128 (in Russian).

Shved, O.M., Vydryns’ka, O.K., Chervecova, V.G., Gubrij, Z.V., Novikov, V.P., 2012. Novi pidhody do biologichnogo ochyshhennja stichnyh vod mista L’vova [New approaches to biological wastewater treatment in Lviv]. Visnyk Nacional’nogo Universytetu “L’vivs’ka Politehnika” 726, 145–152 (in Ukrainian).

Zhurmins’kaja, O.V., 2005. Vlijanie koncentrirovannyh stokov na sostojanie aktivnogo ila sooruzhenij biologicheskoj ochistki stochnyh vod [Influence of concentrated industrial discharges in the state of active cludge in the Process of biological wastewater treatvent]. Materialy ІІ Mezhdunarodnoj nauchnoprakticheskoj konferencii "Geoekologicheskie i bioekologicheskie problemy severnogo prichornomor’ja" [Proc. of the Int. conf. "Geoecological and bioecological problems of the North black see coast"]. Tiraspol, 25–28.

Published
2013-12-02
How to Cite
Sholiak, K., Hnatush, S., Peretyatko, T., & Gudz, S. (2013). Microbiocenoses of Lviv sewage at various stages of purification. Regulatory Mechanisms in Biosystems, 4(2), 76-80. https://doi.org/10.15421/021313