Genetic risk factors for Parkinson’s disease in Ukraine

  • A. K. Koliada D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine
  • T. V. Pletneva D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine “Kyiv Medical University of UAFM” Private Higher Educational Establishment
  • A. S. Sosedko Institute of High Technologies, Taras Shevchenko National University of Kyiv
  • M. A. Chyvlyklyj D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine
  • A. M. Vaiserman D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine
  • I. N. Karaban D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine
Keywords: cytochrome P450 gene, apolipoprotein E gene, glutathione-S-transferase gene


The paper focuses on the genetic risk factors for Parkinson’s disease (PD) such as polymorphisms in genes CYP1A1, GSTM1 and APOE. A total number of 516 people were examined. 300 persons were in the control group (mean age 67,0 ± 0,4 years; 200 males and 100 females) and 216 persons were patients with PD (mean age 65,0 ± 0,7 years, 116 males and 100 females). Whole blood samples collected from each person were genotyped using PCR-RFLP. Amplification and restriction results were assessed by conducting vertical agarose gel electrophoresis. The study analyzed marker с.2452C>A in the CYP1A1 gene. In the control group, allele C frequency was 0.79, and allele A frequency – 0.21. Genotype frequencies were: CC – 0.61, AC – 0.36, AA – 0.03. In the group of patients alleles C and A frequencies were 0.64 and 0.36 correspondingly. Genotype frequencies were: CC – 0.35, AC – 0.58, AA – 0.07. There was a significant difference between both groups in allele A frequency. It is considered that 0/0 genotype for the GSTM1 gene is a risk factor for PD. In the controls, +/+ and 0/0 genotypes frequencies were 0.67 and 0.33 correspondingly. In the group of patients +/+ genotype frequency was 0.55 and 0/0 genotype frequency – 0.45. The difference was statistically significant. In the control group genotype frequencies for the АРОЕ gene were 0.715 (Е3/Е3), 0.077 (Е3/Е4), 0.009 (Е4/Е4), 0.167 (Е2/Е3), 0.031 (Е2/Е4) and 0.000 (Е2/Е2). In the group of patients with PD they were 0.634 (Е3/Е3), 0.148 (Е3/Е4), 0.032 (Е4/Е4), 0.157 (Е2/Е3), 0.023 (Е2/Е4) and 0.000 (Е2/Е2). Е3/Е4 genotype frequency was significantly higher in the group of patients with PD than in the control group. Pathogenic allele с.2452C>A of the CYP1A1 gene is associated with increased risk of PD (OR = 1.72). 0/0 genotype carriers have higher risk to develop PD (OR = 1.72). Allele έ4 of the АРОЕ gene may be associated with increased risk of PD. Risk of the disease is higher in έ2 allele carriers (OR = 2.35) and έ4 allele carriers (OR=1.97). People with genotype Е4/Е4 have chances to be affected by PD 3.48 times higher (OR = 3.48). Associations revealed in the different human populations between genetic factors and PD may vary that is associated with the genetic heterogeneity and proportion of environmental factors which affect people. Despite the results are sometimes controversial, they can be helpful in developing DNA-tests for early diagnosis of PD.


Abbott, S.K., Jenner, A.M., Spiro, A.S., Batterham, M., Halliday, G.M., Garner, B., 2015. Fatty acid composition of the anterior cingulate cortex indicates a high susceptibility to lipid peroxidation in Parkinson's disease. J. Parkinsons Dis. 5(1), 175–185.

Abramycheva, N.J., Fedotova, E.J., Stepanova, M.S., Illarioshkin, S.N., 2012. Mutacionnyj skrining gena GBA s analizom klinicheskih fenotipov bolezni Parkinsona, associirovannyh s mutacijami [Mutational screening of the GBA gene with the analysis of clinic phenotypes of Parkinson’s disease associated with the mutations]. Nauchnyj Centr Nevrologii RAMN (Moskva). Annotirovannye Doklady, Chast' 1 (in Russian).

Agim, Z.S., Cannon, J.R., 2015. Dietary factors in the etiology of Parkinson's disease. Biomed. Res. Int. 2015:672838. >> doi: 10.1155/2015/672838

Ahmadi, A., Fredrikson, M., Jerregârd, H., Akerbäck, A., Fall, P.A., Rannug, A., Axelson, O., Söderkvist, P., 2000. GSTM1 and mEPHX polymorphisms in Parkinson's disease and age of onset. Biochem. Biophys. Res. Commun. 269(3), 676–680. >> doi: 10.1006/bbrc.2000.2338

Alonso-Navarro, H., Jimenez-Jimenez, F.J., Garcia-Martin, E., Agundez, J.A., 2014. Genomic and pharmacogenomic biomarkers of Parkinson's disease. Curr. Drug Metab. 15(2), 129–181. >> doi: 10.2174/138920021502140327175404

Bae, E.J., Yang, N.Y., Lee, C., Lee, H.J., Kim, S., Sardi, S.P., Lee, S.J., 2015. Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation. Exp. Mol. Med. 47, e153. >> doi: 10.1038/emm.2014.128

Baez, S., Segura-Aguilar, J., Widersten, M., 1997. Glutathione transferase catalyse the detoxication of oxidised metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem. J. 324, 25–28.

Bagyeva, G.K., 2009. Kliniko-geneticheskij i biohimicheskij analiz bolezni Parkinsona: Mehanizmy predraspolozhennosti, jeksperimental'nye modeli, podhody k terapii [Clinicogenetic and biochemical analysis of Parkinson’s disease: Mechanisms of predisposition, experimental models, approaches to a therapy]. Dis. … kand. biol. nauk, Moscow (in Russian).

Bandmann, O., Vaughan, J., Holmans, P., Marsden, C.D., Wood, N.W., 1997. Association of a slow acetylator genotype for N-acetyltransferase 2 with familial Parkinson’s disease. Lancet 350, 1136–1139.

Baranov, V.S., Baranova, E.V., Yvashhenko, T.E., Aseev, M.V., 2000. Genom cheloveka y geny «predraspolozhennosty» [Human genome and predisposition genes]. Intermedyka, Sankt-Peterburg (in Russian).

Bras, J., Guerreiro, R., Darwent, L., Parkkinen, L., Ansorge, O., Escott-Price, V., Hernandez, D.G., Nalls, M.A., Clark, L.N., Honig, L.S., Marder, K., Van Der Flier, W.M., Lemstra, A., Scheltens, P., Rogaeva, E., St George-Hyslop, P., Londos, E., Zetterberg, H., Ortega-Cubero, S., Pastor, P., Ferman, T.J., Graff-Radford, N.R., Ross, O.A., Barber, I., Braae, A., Brown, K., Morgan, K., Maetzler, W., Berg, D., Troakes, C., Al-Sarraj, S., Lashley, T., Compta, Y., Revesz, T., Lees, A., Cairns, N., Halliday, G.M., Mann, D., Pickering-Brown, S., Dickson, D.W., Singleton, A., Hardy, J., 2014. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum. Mol. Genet. 23(23), 6139–6146. >> doi: 10.1093/hmg/ddu334

Carelli, V., Musumeci, O., Caporali, L., Zanna, C., La Morgia, C., Del Dotto, V., Porcelli, A.M., Rugolo, M., Valentino, M.L., Iommarini, L., Maresca, A., Barboni, P., Carbonelli, M., Trombetta, C., Valente, E.M., Patergnani, S., Giorgi, C., Pinton, P., Rizzo, G., Tonon, C., Lodi, R., Avoni, P., Liguori, R., Baruzzi, A., Toscano, A., Zeviani, M., 2015. Syndromic parkinsonism and dementia associated with OPA1 missense mutations. Ann. Neurol. doi: 10.1002/ana.24410.

Carlsten, C., Sagoo, G.S., Frodsham, A.J., Burke, W., Higgins, J.P., 2008. Glutathione S-Transferase M1 (GSTM1) polymorphisms and lung cancer: A literature-based systematic HuGE review and meta-analysis. Am. J. Epidemiol. 167(7), 759–774. >> doi: 10.1093/aje/kwm383

Chan, D.K., Mellick, G.D., Buchanan, D.D., Hung, W.T., Ng, P.W., Woo, J., Kay, R., 2002. Lack of assosiation between CYP1A1 polymorphism and Parkinson’s disease in a Chinese population. J. Neural. Transm. 109(1), 35–39.

Eerola, J., Launes, J., Hellstrom, O., Tienari, P.J., 2002. Apolipoprotein E (APOE), parkin and catechol-O-methyltransferase (COMT) genes and susceptibility to sporadic Parkinson’s disease in Finland. Neurosci. Lett. 330(3), 296–298.

Fischer, R., Maier, O., 2015. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell Longev. doi: 10.1155/2015/610813.

Gasser, T., 2005. Genetics of Parkinson’s disease. Curr. Opin. Neurol. 18(4), 363–369.

Giljazova, I.R., 2004. Molekuljarno-geneticheskoe izuchenie bolezni Parkinsona v Bashkortostane [Molecular-genetic study of Parkinson’s disease in Bashkortostan]. Dis. … kand. biol. nauk, Ufa (in Russian).

Gopalai, А.A., Lim, S.Y., Chua, J.Y., Tey, S., Lim, T.T., Mohamed Ibrahim, N., Tan, A.H., Eow, G.B., Abdul Aziz, Z., Puvanarajah, S.D., Viswanathan, S., Looi, I., Lim, S.K., Tan, L.P., Chong, Y.B., Tan, C.T., Zhao, Y., Tan, E.K., Ahmad-Annuar, A., 2014. LRRK2 G2385R and R1628P mutations are associated with an increased risk of Parkinson’s disease in the Malaysian population. BioMed Res. Int. Article ID 867321.

Hamza, T.H., Payami, H., 2010. The heritability of risk and age at onset of Parkinson’s disease after accounting for known genetic risk factors. J. Hum. Genet. 55, 241–243.

Harhangi, B.S., de Rijk, M.C., van Duijn, C.M., Van Broeckhoven, C., Hofman, A., Breteler, M.M., 2000. APOE and the risk of PD with or without dementia in a population-based study. Neurology 54(6), 1272–1276. >> doi: 10.1212/WNL.54.6.1272

Hayes, J.D., Strange, R.C., 1995. Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic. Res. 22(3), 193–207. >> doi: 10.3109/10715769509147539

Hu, G., Antikainen, R., Jousilahti, P., Kivipelto, M., Tuomilehto, J., 2008. Total cholesterol and the risk of Parkinson disease. Neurology 70(21), 1972–1979. >> doi: 10.1212/01.wnl.0000312511.62699.a8

Jahno, N.N., Shtul'man, D.R., 2001. Bolezni nervnoj sistemy [Di¬seases of nervous system]. Medicina, Moscow (in Russian).

Karaban', N.V., 2011. Rol' genealogicheskih faktorov v patogeneze BP [The role of genealogical factors in Parkinson’s disease pathogenesis]. Nevrologicheskij Zhurnal 44(6), 23–25 (in Russian).

Mata, I.F., Leverenz, J.B., Weintraub, D., Trojanowski, J.Q., Hurtig, H.I., Van Deerlin, V.M., Ritz, B., Rausch, R., Rhodes, S.L., Factor, S.A., Wood-Siverio, C., Quinn, J.F., Chung, K.A., Peterson, A.L., Espay, A.J., Revilla, F.J., Devoto, J., Hu, S.C., Cholerton, B.A., Wan, J.Y., Montine, T.J., Edwards, K.L., Zabetian, C.P., 2014. APOE, MAPT, and SNCA genes and cognitive performance in Parkinson disease. JAMA Neurol. 71(11), 1405–1412.

Nicholl, D.J., Bennett, P., Hiller, L., Bonifati, V., Vanacore, N., Fabbrini, G., Marconi, R., Colosimo, C., Lamberti, P., Stocchi, F., Bonuccelli, U., Vieregge, P., Ramsden, D.B., Meco, G., Williams, A.C., 1999. A study of five candidate genes in Parkinson’s disease and related neurodegenerative disorders. Neurology 53(7), 1415–1421.

Nuytemans, K., Theuns, J., Cruts, M., Van Broeckhoven, C., 2010. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum. Mutat. 31(7), 763–780. >> doi: 10.1002/humu.21277

Punia, S., Das, M., Behari, M., Dihana, M., Govindappa, S.T., Muthane, U.B., Thelma, B.K., Juyal, R.C., 2011. Leads from xenobiotic metabolism genes for Parkinson's disease among north Indians. Pharmacogenet. Genomics 21(12), 790–797. >> doi: 10.1097/FPC.0b013e32834bcd74

Rodriguez, M., Rodriguez-Sabate, C., Morales, I., Sanchez, A., Sabate, M., 2015. Parkinson's disease as a result of aging. Aging Cell. doi: 10.1111/acel.12312. >> doi: 10.1111/acel.12312

Satake, W., Nakabayashi, Y., Mizuta, I., Hirota, Y., Ito, C., Kubo, M., Kawaguchi, T., Tsunoda, T., Watanabe, M., Takeda, A., Tomiyama, H., Nakashima, K., Hasegawa, K., Obata, F., Yoshikawa, T., Kawakami, H., Sakoda, S., Yamamoto, M., Hattori, N., Murata, M., Nakamura, Y., Toda, T., 2009. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nature Genetics 41(12), 1303–1308.

Schellenberg, G.D., 1995. Genetic dissection of Alzheimer disease, a heterogeneous disorder. Proc. Natl. Acad. Sci. USA. 92(19), 8552–8559.

Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., Crain, B.J., Hulette, C.M., Joo, S.H., Pericak-Vance, M.A., Goldgaber, D., Roses, A.D., 1993. Increased amyloid Я-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA. 90(20), 9649–9653.

Straulino, E., Scaravilli, T., Castiello, U., 2015. Social intentions in Parkinson's disease patients: A kinematic study. Cortex. doi: 10.1016/j.cortex.2015.02.012.

Suhoverskaja, O., 2011. Bolezn' Parkinsona i parkinsonicheskie sindromy: Diagnoz i lechenie [Parkinson’s disease and parkinsonian syndromes: Diagnosis and treatment]. Nevrologicheskij Zhurnal 44(6), 31–34.

Tan, E.K., Khajavi, M., Thoronby, J.L., Nagamitsu, S., Jankovic, J., Ashizawa, T., 2000. Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology 55(4), 533–538.

Tang, G., Xie, H., Xu, L., Hao, Y., Lin, D., Ren, D., 2002. Genetic study of apolipoprotein E gene, alpha-1 antichymotrypsin gene in sporadic Parkinson disease. Am. J. Med. Genet. 114(4), 446–449. >> doi: 10.1002/ajmg.10249

Tison, F., Coutelle, C., Henry, P., Cassaigne, A., 1994. Glutathione-S-transferase (class mu) phenotype in Parkinson’s disease. Mov. Disord. 9, 117–118.

Tykocki, T., Kornakiewicz, A., Mandat, T., Nauman, P., 2013. Pain perception in patients with Parkinson’s disease. J. Clin. Neurosci. 20(5), 663–666.

Vance, J.E., 2012. Dysregulation of cholesterol balance in the brain: Contribution to neurodegenerative diseases. Dis. Model. Mech. 6(5), 746–755.

Verstraeten, A., Theuns, J., Van Broeckhoven, C., 2015. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet. 31(3), 140–149. >> doi: 10.1016/j.tig.2015.01.004

Wang, J., Liu, Z., Chen, B., 2000. Association between cytochrome P-450 enzyme polymorphisms and Parkinson’s disease. Nat. Lib. Med. 80, 585–587.

Weisgraber, K.H., Roses, A.D., Strittmatter, W.J., 1994. The role of apolipoprotein E in the nervous system. Curr. Opin. Lipidol. 5(2), 110–116. >> doi: 10.1097/00041433-199404000-00007

Williams, A., Steventon, G., Sturman, S., Waring, R., 1991. Xenobiotic enzyme profiles and Parkinson's disease. Neurology 41(5), 29–32. >> doi: 10.1212/WNL.41.5_Suppl_2.29

How to Cite
Koliada, A. K., Pletneva, T. V., Sosedko, A. S., Chyvlyklyj, M. A., Vaiserman, A. M., & Karaban, I. N. (2015). Genetic risk factors for Parkinson’s disease in Ukraine. Regulatory Mechanisms in Biosystems, 6(1), 45-50.