Splenomegaly development and disseminated intravascular coagulation syndrome in acute canine babesiosis

*Polissia National University, Zhytomyr, Ukraine
**Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine

Disseminated intravascular coagulation (DIC) syndrome is the main defining process in the pathogenetic axis of complications in canine babesiosis. The involvement of the spleen with further irreversible changes in the organ largely determines the severity of the animal’s condition after spontaneous babesiosis. The work presented here aimed to determine the role of the DIC syndrome as a triggering factor for lesions of the spleen. Clinical and laboratory studies (haematological, biochemical, hemodynamic) have been carried out. Pathological studies of the removed spleen were carried out by histological methods using universal and specific staining. After suffering acute spontaneous babesiosis, the development of hypersplenism and splenomegaly was found in dogs. The diagnosis was confirmed haematologically by the detected cytopenia, normochromic type anaemia. An additional parameter was a significantly increased erythrocyte sedimentation rate. The biochemical profile indicated the development of bilirubinemia due to the conjugated fraction, hyperfermentation of transaminases, hypoaalbuminemia, which reflected the development of hepatitis and liver failure. Markers of DIC syndrome in laboratory studies are represented by reliable hypofibrinogenemia, increased level of fibrinogen/fibrin degradation products, including D-dimer, and soluble fibrin monomer complexes. The multidirectional indices of coagulation tests (activated partial thromboplastin and prothrombin time) made it possible to classify the stage of “consumption coagulopathy” of the DIC syndrome. The haemodynamic parameters of the sick dogs were characterized by a significant deficit in the circulating blood volume. Together with the indicators of the “consumption coagulopathy” stage of the DIC syndrome, the hemodynamic indexes indicate a moderate degree of shock stage II – the stable reversibility, but the magnitude of the circulating blood volume deficit determines the tendency towards shock irreversibility. Histological studies have established a significant proliferation of the stromal elements of the organ, the formation of specific complexes of vessels with sinuses, clogging with blood clots, and the organ's parenchyma dystrophy. Such changes characterize complete splenomegaly, which is based on the organo-pathology of the DIC syndrome. The deposition of “old” fibrin in the connective tissue structures of the spleen indicates that DIC syndrome continues throughout the entire period of hyperplastic changes in the organ. The presence of hyalinosis in blood vessel walls of the spleen parenchyma determines irreversible changes in them. Thus, DIC syndrome is the basis for splenomegaly development in dogs after acute spontaneous babesiosis. It is confirmed by laboratory blood tests and histologically by the presence of fibrin thrombi in the structures of the organ, which determine the organo-pathology of the syndrome. The information obtained serves to expand the concepts of the pathogenesis of blood protozoal disease, define the high risk of complications that can become fatal for the health and life of animals.

Keywords: hypersplenism; cytopenia; fibrin age; organopathology of DIC; shock; circulating blood volume; markers of DIC syndrome; consumption coagulopathy.

Introduction

Canine babesiosis is a typical enzootic protozoal disease for the Central Polissia zone of Ukraine. Its causative agents are large forms of Babesia spp. (B. canis Piana et Galli-Valerio, 1895, B. vogeli Reichenow, 1937), which are distinguished by interspecific virulence. Regional vectors of babesiosis are ixodid ticks of some species from genera Dermacentor Koch, 1844 and Ixodes Latreille, 1795 (Vannier and Krause, 2013; Köster et al., 2015; Pantchev et al., 2015; Solano-Gallego et al., 2016; Akel & Mobarakai, 2017; Bilić et al., 2018; Wahlung et al., 2019; Vishwakarma & Nandini, 2019).

Babesiae are intra-erythrocytic parasites. Therefore, the symptoms of babesiosis are characterized by clinical signs of damage to various organs and systems as a result of their oxygen starvation. Also, Babesia spp. have toxic, allergic, trophic, and inoculation pathogenic effects on the host organisms (Schetters et al., 2009; Köster et al., 2015; Eichenberger et al., 2016). The involvement of various organs and systems of a sick animal in the pathological process of babesiosis is subject to a single pathogenetic axis – the development of disseminated intravascular coagulation (DIC) syndrome. The genesis of DIC syndrome is based on the fibrin thrombus formation mainly in the area of the microvasculature (Goddard et al., 2013; Goddard et al., 2016; Dubova et al., 2020). Further, as a result of depletion of blood coagulation factors, bleeding occurs. The central link in the chain of these pathological phenomena is the defect of a vascular endothelium under the influence of the primary parasitic factor (Goddard et al., 2013).

Babesiae, which initially entered the dog's body, are retained in cells of the mononuclear phagocyte system or bound by hepatocyte receptors. Mass hepatocyte destruction occurs due to the multiplication of trophozoites in hepatocytes. Parasites have a destructive effect on liver vessels and an entire portal system, as a result of which portal hypertension occurs (Schetters et al., 2009; Köster et al., 2015; Dubova et al., 2019).

Affected erythrocytes are utilized by the spleen. The function of the organ in the initial stage of babesiosis is intensively activated, which to some extent is also caused by increased pressure in the portal vein (Boes...
were performed on a Mindray BC-3600 (Mindray Medical Rus Co. Ltd, Tartment rate (ESR), the number of erythrocytes, leukocytes and platelets) minning the volume of circulating blood in dogs. UA Patent 10707) of the 2017). The deficiency of CBV was determined by the Moore haematocrit volume (CBV) and its components using the method of dilution (Soroka, 2010; Nathan et al., 2016; Belousov, topographic position, echogenicity, as well as spleen parenchyma echo-structure were determined (Tutton et al., 2008; Nyland & Mattoon, 2015). The sensor frequency was 5–10 MHz. The size, boundaries of the spleen paratus with a Doppler (SonoScape Medical Corp., P. R. China). Fixation of the development of DIC syndrome in canine babesiosis (Jobe & Di Paola, 2019; Michelson, 2019).

Materials and methods

The research was carried out at the Educational-Scientific-Production Clinic of Veterinary Medicine of the Polisia National University (Zhy- turny, Ukraine) during 2018–2020. The research protocol of the current study was approved by the Ethics Committee of the Polisia National Uni-ersity (approval number 2018/05). The experimental group consisted of 25 dogs of different breeds and crosses of breeds, aged from 2 to 7 years, weighing 10–40 kg, which, after suffering spontaneous babesiosis, had complications in the form of hypersplenism and splenomegaly. Control group – clinically healthy dogs (n = 30).

Animals with babesiosis were treated according to the traditional proto-col using the antiprotozoal drug Pro-stop® (NP0 Api-San LLC, Rus-sian Federation), as well as pathogenetic and symptomatic therapy.

Complicated splenomegaly was diagnosed 7–10 days after clinical recovery in dogs initially infected with Babesia spp.

Clinical studies were carried out using general methods. The final dia-gnosis of babesiosis was established based on the detection of intra-erythrocytic paired-pear-shaped form parasites in fixed blood smears (Gierna stain) (Briggs & Bain, 2017), which were identified as large forms of Babesia spp. The average intensity of parasiaemia in the experimen-tal dogs was 6–10% of affected erythrocytes.

Ultrasound examination was performed using a SonoScape S 20 appara-tus with a Doppler (SonoScape Medical Corp., P. R. China). Fixation of dogs was in dorsal recumbency, and in some cases – lateral right-sided. The sensor frequency was 5–10 MHz. The size, boundaries of the spleen topographic position, echogenicity, as well as spleen parenchyma echo-structure were determined (Tutton et al., 2008; Nyland & Mattoon, 2015).

Haematological studies (haemoglobin content, erythrocyte sedimentation rate (ESR), the number of erythrocytes, leukocytes and platelets) were performed on a Mindray BC-3600 (Mindray Medical Rus Co. Ltd, Russian Federation) haematology analyser (Briggs & Bain, 2017).

Haematological parameters included determining the circulating blood volume (CBV) and its components using the method of dilution (Soroka, N. M., Dubova, O. A., & Iaremkenko, D. O. (2005). Method of deter-mining the volume of circulating blood in dogs. UA Patent 10707) of the T–1824 dye Evans blue, as well as calculating the specific volume of circulating blood (ml/kg) (Schorn, 2010; Nathan et al., 2016; Belousov, 2017). The deficiency of CBV was determined by the Moore haematocrit method according to the formula (1):

$$BLV = CBV_{norm} \times \left(\frac{H_{norm} - H_{spleen}}{H_{norm}} \right)$$

BLV – blood loss volume (ml), CBV – normal circulating blood volume (ml), H_{norm} – normal haematocrit (L/L), H_{spleen} – haematocrit value of patients (L/L).

For biochemical studies (total protein and albumin amount, activity of transaminases ALT, AST, GGT, total and conjugated bilirubin concentra- tion), a semi-automatic biochemical analyser RT-9100 Vet (Rayto Life and Analytical Sciences Co., Ltd, P. R. China) was used.

Coagulographic parameters – soluble fibrin-monomer complexes (SFMC), amount of fibrinogen and fibrinogen/fibrin degradation products (FDP) (Rafaj et al., 2013; Nguyen et al., 2016; Laffan & Manning, 2017; Kawasugi et al., 2021), as well as thrombocytopenia, served as indicators of the development of DIC syndrome in canine babesiosis (Jobe & Di Paola, 2019; Michelson, 2019).

The SFMC content was determined by a quantitative version of the ortho-phenanthroline method (Rafaj et al., 2013). Fibrinogen levels were assessed by the Clauss clotting method using a coagulometer ACL TOP 350 CTS (Instrumentation Laboratory, USA) (Briggs & Bain, 2017) as well as activated partial thromboplastin time (APTT) and prothrombin time (PT) of blood plasma (Roshal, 2013a, 2013b). The content of FDP and D-dimer were determined by enzyme-linked immunosorbent assay (Rafaj et al., 2013). Spleens were removed during a forced splenectomy. The dimensions of the organ were measured, the nature of the surface, consistency and internal structure were assessed.

For histological studies, pieces of the spleen from different areas were embedded in paraffin. Sections were stained with haematoxin-eosin and by the red-blue-black method (RBB) (Soroka, N. M., & Dubova, O. A. (2004). A method for determination of fibrin in disseminated intravascular coagulation syndrome. UA Patent 7324).

Histological preparations were photographed using a Levenhuk MED 35 microscope with a Levenhuk M Plus digital camera (Levenhuk Zoom & Joy, Russian Federation).

Statistical processing was performed by a multiple comparison of va-riances using the Fisher distribution (ANOVA). Calculations were per-formed using Statistics 13.3 IT Application. The obtained data significa-cence was assessed by Fisher’s F-test at a confidence level P < 0.05.

Results

In sick dogs with the primary course of spontaneous babesiosis on the first day of observation, the following were noted: decrease or loss of appetite, lethargy, fever (40–41 °C), anaemia of visible mucous membranes, bloody urine. In the next 3 days, yellowness of the mucous membranes appeared, reflected pain in the right hypochondrium, a single portion of urine was reduced by three times. Vomiting of foam with bile impurities was accompanied by various disorders of the gastrointestinal tract – from flatulence and constipation to diarrhoea. All dogs diagnosed with babesiosis had tachycardia and dyspnoea. Movement coordination disorders and clonic-tonic seizures were noted in 8% of affected dogs.

After the traditional treatment, the patients recovered within 3–5 days.

Signs of deteriorating health appeared in 25 dogs (8.3%) 7–10 days after clinical recovery. Symptoms were manifested by a decrease or loss of appetite, apathy, and the development of expiratory dyspnoea. Vomiting and intestinal fistulation were noted in 14 dogs (56%).

Palpation of the abdominal wall revealed an increase in the spleen in the left hypochondrium, which was pronounced in the epigastric region. The pain sensitivity was exacerbated. In the area of the right hypochon-drium, an enlarged caudal edge of the liver was palpable.

According to the results of the ultrasonographic examination, it was found that the enlarged spleen was located in the centre of the abdominal cavity, in the pre-umbilical region, and the region of the xiphoid cartilage. The spleen caudicle was placed caudal to the navel, which in 8 cases reached the bladder edge. The organ had rounded edges, uneven borders. There were thickenings in the middle and caudal part of the spleen. The parenchyma of the organ had a reduced echogenicity, its structure was heterogeneous. The foci of reduced echogenicity or its absence did not have clear boundaries.

In the study of blood, complex changes were established (Tables 1–4). From the data presented, it can be seen that the sick animals had pro-nounced cytopenia, bilirubinemia developed due to the predominantly conjugated fraction, the activity of transaminases was increased, as well as hypoalbuminemia, hypofibrinogenaemia, an increase in FDP including D-dimer, and SFMC levels were noted. There was a significant decrease in specific CBV by 1.6 times, the CBV deficit was 41%.

Table 1

<table>
<thead>
<tr>
<th>Haematologic parameters in dogs with manifestations of hypersplenism after the acute spontaneous babesiosis (x ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicators</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Haemoglobin, g/L</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate, mm/h</td>
</tr>
<tr>
<td>Erythrocytes, TL</td>
</tr>
<tr>
<td>Leukocytes, GL</td>
</tr>
<tr>
<td>Platelets, GL</td>
</tr>
</tbody>
</table>

Note: * – P < 0.05; ** – P < 0.01; *** – P < 0.001 relative to the control group.

The data of coagulographic tests tended to be multidirectional indicators - APTT decreases, while PT lengthens. The removed spleen visually had the following anatomical characteristics: rounded edges; lumpy flabby surface; the left part was thickened, and it was 1.5–2.0 times greater than the thickness of the right part. The consistency of the organ was dense, the colour was purple-cyanotic. The capsule was loose, cloudy. Vessels were filled with blood.

Table 2
Hemodynamic parameters of dogs with manifestations of hypersplenism after the acute spontaneous babesiosis (x ± SE)

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Control group (n = 30)</th>
<th>Experimental group (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haematocrit, L/L</td>
<td>0.46 ± 0.04</td>
<td>0.27 ± 0.06 **</td>
</tr>
<tr>
<td>Circulating plasma volume, mL</td>
<td>2739.0 ± 108.3</td>
<td>2460.0 ± 203.8</td>
</tr>
<tr>
<td>Circulating erythrocytes volume, mL</td>
<td>2254.0 ± 180.5</td>
<td>928.0 ± 70.0 *</td>
</tr>
<tr>
<td>Circulating blood volume, mL</td>
<td>5102.0 ± 138.1</td>
<td>3428.0 ± 327.0 ***</td>
</tr>
<tr>
<td>Specific circulating blood volume, mL/kg</td>
<td>128.0 ± 6.4</td>
<td>87.4 ± 5.1 ***</td>
</tr>
<tr>
<td>Circulating blood volume, % of body weight</td>
<td>13.2 ± 0.6</td>
<td>8.5 ± 0.3 ***</td>
</tr>
</tbody>
</table>

Note: *** – P < 0.001, * – P < 0.05 relative to the control group.

Table 3
Biochemical indicators of dogs with manifestations of hypersplenism after the acute spontaneous babesiosis (x ± SE)

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Control group (n = 30)</th>
<th>Experimental group (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bilirubin, μmol/L</td>
<td>4.3 ± 0.06</td>
<td>1.7 ± 3.2 ***</td>
</tr>
<tr>
<td>Conjugated bilirubin, μmol/L</td>
<td>0</td>
<td>9.6 ± 2.2 **</td>
</tr>
<tr>
<td>Aspartate aminotransferase, IU/L</td>
<td>16.4 ± 0.8</td>
<td>98.3 ± 8.6 ***</td>
</tr>
<tr>
<td>Alanine aminotransferase, IU/L</td>
<td>21.2 ± 1.4</td>
<td>106.0 ± 12.3 ***</td>
</tr>
<tr>
<td>Gamma glutamytransferase, IU/L</td>
<td>2.3 ± 0.8</td>
<td>263.5 ± 5.6 ***</td>
</tr>
<tr>
<td>Total protein, g/L</td>
<td>73.4 ± 4.4</td>
<td>64.1 ± 4.8</td>
</tr>
<tr>
<td>Albumin, g/L</td>
<td>34.7 ± 2.1</td>
<td>20.1 ± 2.2 ***</td>
</tr>
<tr>
<td>Soluble fibrin-monomer complexes, g/L</td>
<td>0.030 ± 0.002</td>
<td>0.310 ± 0.014 ***</td>
</tr>
<tr>
<td>Fibrinogen/fibrin degradation products, g/L</td>
<td>0.078 ± 0.010</td>
<td>0.34 ± 0.04 ***</td>
</tr>
<tr>
<td>Fibrinogen, g/L</td>
<td>2.65 ± 0.19</td>
<td>0.38 ± 0.26 ***</td>
</tr>
</tbody>
</table>

Note: * – P < 0.05; ** – P < 0.01; *** – P < 0.001 relative to the control group.

Table 4
Markers of intravascular coagulation in dogs with hypersplenism after acute spontaneous babesiosis (x ± SE)

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Control group (n = 30)</th>
<th>Experimental group (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble fibrin-monomer complexes, g/L</td>
<td>0.030 ± 0.002</td>
<td>0.310 ± 0.014 ***</td>
</tr>
<tr>
<td>FDP, g/L</td>
<td>0.078 ± 0.001</td>
<td>0.34 ± 0.04 ***</td>
</tr>
<tr>
<td>D-dimer, μg/L</td>
<td>0.17 ± 0.02</td>
<td>0.062 ± 0.12</td>
</tr>
<tr>
<td>Fibrinogen, g/L</td>
<td>2.65 ± 0.19</td>
<td>0.38 ± 0.26 ***</td>
</tr>
<tr>
<td>Activated partial thromboplastin time of plasma, s</td>
<td>44.4 ± 2.8</td>
<td>39.8 ± 5.4</td>
</tr>
<tr>
<td>Prothrombin time of plasma, s</td>
<td>19.3 ± 1.1</td>
<td>23.5 ± 1.2</td>
</tr>
</tbody>
</table>

Note: *** – P < 0.001 relative to the control group.

Histological examination revealed that the white pulp was poorly structured, the lymphatic formations were not expressed (Fig. 1).

The trabeculae were thickened and destructed. The strong proliferation of blood vessels formed specific complexes with the sinuses, forming the cavernous bodies. These complexes were sufficiently developed and displaced the pulp. Blood clots were noted in the vascular lumen which completely obstructed vessels (Fig. 2).

Fig. 1. The lymphatic follicle of the spleen in canine splenomegaly: 1 – poorly expressed structure; RBB stain. × 100

Fig. 2. Changes in vessels of the spleen in splenomegaly and the formation of specific complexes with sinuses of cavernous bodies: 1 – cavernous bodies, 2 – blood clots, obstructing vessels, 3 – spleen pulp; haematoxylin-eosin stain; × 160

Vascular membranes were oedematous, walls were susceptible to de-structuration and hyalinosis (Fig. 3).

When stained with the RBB method (Soroka et al., 2005), fibrin deposits were found in the spleen tissues. Thus, in connective tissue trabeculae, deposits of predominantly "old fibrin" (biotiches of blue colour), with small blotches of "young fibrin" (purple colour) were noted (Fig. 4). In the walls of vessels, there were mainly deposits of "young fibrin" (Fig. 5, 6).

Discussion

The main pathogenic factor that plays a decisive role in the entire cascade of pathogenesis in babesiosis is the destruction of red blood cells under the influence of pathogens (Schetters et al., 2009; Solano-Gallego et al., 2016; Akel & Mobarakai, 2016; Eichenberger et al., 2016). In our earlier works (Dubova, 2020), it was shown that in acute babesiosis, the main complicating pathogenetic force is the DIC syndrome. The process affects all organs and systems, leading to functional disorders and organic changes. In all experimental dogs with acute babesiosis, clinical signs indicated the development of multiple organ pathology: haemolytic jaundice, intoxication syndrome, hepatitis, acute renal failure, gastrenterocolitis, cardiovascular failure, encephalopathy, and erythropathy. All these symptoms are due to the pathogenic effect of the pathogen (the intensity of parasitaemia is 6–10%) and the development of DIC syn...
Hypersplenism (Mohapatra & Mishra, 2013; Warkentin, 2018). Obtained characterized cytopenia and were the basis for the diagnosis – anemia, erythrocytopenia, leukocytopenia, and thrombocytopenia. The data in the hematological profile: normochromic type anaemia, ESR acceleration syndrome and were not specific. The following changes were noted: hypofibrinogenemia (P < 0.001), a significant increase in the level of FDP including D-dimer, and SFMC (P < 0.001). Thus, the main complicating process, which is the cause of irreversible changes in the spleen, was confirmed by laboratory tests. The indicators of the APTT and PT coagulation tests are multidirectional, which, against the background of the absence of clear clinical signs of the DIC syndrome itself, allowed us to classify its course as a “subacute stage of consumption coagulopathy” (Levi, 2018), in which both DIC pathogenic vectors – hypercoagulation and hypocoagulation are simultaneously manifested (Levi, 2018; Dubova et al., 2020).

According to results of studies of hemodynamic blood parameters of dogs with complications after suffering babesiosis, a significant circulating blood deficit was established (41%). Such a deficiency is considered severe and may indicate the development of irreversible haemorrhagic shock (Guly et al., 2011; Pacagnella et al., 2013; Vincent & De Backer, 2013; Nathan et al., 2016; Timmermans et al., 2018; Hajjar & Teboul, 2019; Ji & Brown, 2019; Villa et al., 2019; Gupta & Pinsky, 2020). It is known (Kage et al., 2019) that mainly mesenchymal dystrophies develop in the stroma of organs, as well as in the blood vessel walls, in particular, mesenchymal dysproteinoses. First, the mucoid swelling develops pathogenetically, and then the permeability of vascular walls increases. Plasma seeps through the blood vessels’ walls and fibrin forms insoluble compounds with collagen fibres.

Despite therapeutic measures taken to destroy the pathogen, complications developed in some animals, which were identified as hypersplenism based on clinical and laboratory studies (Warkentin, 2018). Clinical signs established during this period indicated the development of intoxication syndrome and were not specific. The following changes were noted in the haematological profile: normochromic type anaemia, ESR acceleration, erythrocytopenia, leukocytopenia, and thrombocytopenia. The data obtained characterized cytopenia and were the basis for the diagnosis – hypersplenism (Mohapatra & Mishra, 2013; Warkentin, 2018).

It is known (Warkentin, 2018) that hypersplenism is a functional concept that reflects the hyperactivity of the spleen concerning blood corpuscles and their increased destruction. In its development, this process is accompanied by hyperplastic changes in the organ with loss of spleen functionality in the future. Ultimately, splenomegaly is an irreversible condition (Mohapatra & Mishra, 2013; Dubova et al., 2019).

Splenomegaly is almost always accompanied by impaired blood flow in the portal vessels due to increased pressure in the splenic vein. As a result, portal hypertension develops, which is accompanied by varicose veins of internal organs, primarily the esophagus and stomach. This is a very dangerous syndrome from a prognostic point of view, which can cause critical conditions, in particular, bleeding and death (Kamath & Shah, 2018). Naturally and often, splenomegaly is accompanied by hepatomegaly (Mohapatra & Mishra, 2013; Kamath & Shah, 2018).

A biochemical study of the blood of sick dogs with hypersplenism / splenomegaly manifestations revealed: hyperbilirubinemia (P < 0.001) due to a predominantly conjugated fraction, a significant increase in the activity of transaminases AST, ALT, and GGT (P < 0.001), hypoalbuminemia (P < 0.001). Such indicators determine the development of liver failure in the form of hepatitis, inflammation of the biliary tract, impaired protein-synthesizing function of the liver (Kamath & Shah, 2018).

The performed study of the DIC syndrome markers’ block made it possible to establish: hypofibrinogenemia (P < 0.001), a significant increase in the level of FDP including D-dimer, and SFMC (P < 0.001). Thus, the main complicating process, which is the cause of irreversible changes in the spleen, was confirmed by laboratory tests. The indicators of the APTT and PT coagulation tests are multidirectional, which, against the background of the absence of clear clinical signs of the DIC syndrome itself, allowed us to classify its course as a “subacute stage of consumption coagulopathy” (Levi, 2018), in which both DIC pathogenic vectors – hypercoagulation and hypocoagulation are simultaneously manifested (Levi, 2018; Dubova et al., 2020).

According to clinical indications, sick dogs underwent splenectomy, and the affected organ was subjected to further histological examination.

All samples showed a strong proliferation of connective tissue elements – the trabecular apparatus, vascular walls. In this case, the parenchyma of the organ was destructed, lymphatic formations were poorly expressed. It is known (Kage et al., 2019) that mainly mesenchymal dystrophies develop in the stroma of organs, as well as in the blood vessel walls, in particular, mesenchymal dysproteinoses. First, the mucoid swelling develops pathogenetically, and then the permeability of vascular walls increases. Plasma seeps through the blood vessels’ walls and fibrin forms insoluble compounds with collagen fibres.

Figure 5 shows that elements of trabeculae contained more of the “old” fibrin, but there are also disseminations of the “young” fibrin. “Old” fibrin completely permeates the lymphatic follicle’s blood vessel walls. In walls of the parenchyma vessels, mainly the “young” fibrin is deposited (Fig. 6). Such changes indicate that initially, elements of the stroma and lymphatic formation vessels are subject to disorganization, and later – vessels of the parenchyma.

Further destruction of the collagen and plasmorrhage are the basis for the development of hyalinosis (Weinreb & Rosenbloom, 2013; Kage et al., 2019), which is pronounced in the parenchyma blood vessel walls (Fig. 4). This dysproteinoses characterizes irreversible changes in the con-
ective tissue. Thus, determining deposits of fibrin in the organ’s structures characterizes the organopathology of the DIC syndrome and determine the systemic response of the body with a tendency to irreversibility (Dubova et al., 2020).

Considering the “colour scale” of the distribution of fibrin by age of its deposition in tissues, it can be argued that the complication process is chronic, beginning even during the acute form of babesiosis (Köster et al., 2015; Dubova et al., 2020), and continues until the end of splenomegaly as an irreversible process.

In the development of splenomegaly, the process of fibrin deposition in the connective tissue elements begins with the stroma structures and lymphatic formation vessels, and later affects parenchyma vessels of the organ. Thus, the soaking of blood plasma into connective tissue elements is observed, which means that interstitial oedema develops in the spleen as a parenchymal organ. Pathogenetically, this process causes a decrease in effective circulating blood elements in the bloodstream (Levi, 2018; Dubova et al., 2020). In the continuation of the phenomenon of circulating blood volume deficit, they increase and cause the development of shock (Vincent & De Backer, 2013; Timmermans et al., 2018), which, in turn, intensifies the DIC syndrome, forming a “vicious circle”.

Conclusions

It can be concluded that in dogs after acute spontaneous babesiosis, within 7–10 days, hypersplenism / splenomegaly syndrome develops (the extent of manifestation is 8.3%), which is confirmed by clinical general and special methods. During this period, haematological parameters are characterized by normochromic type anaemia and cytopenia. According to results of the biochemistry, liver failure in the form of hepatitis can be established, the inflammation of bile ducts, violations of protein-synthezing function. Changes in hemodynamic parameters determine a severe deficit in circulating blood volume (41%) and the development of decompensated haemorrhagic shock. Markers of haemostasis indicators (hypofibrinogenemia, significant increase in SFMC and FDP, including D-dimer, multidirectional indicators of APPT and PT coagulation tests) identify DIC syndrome at the stage of consumption coagulopathy. Histopathological studies indicate the development of mesenchymal dysproteinosis in connective tissue elements of the spleen. They are based on the deposition of fibrin during the entire process of splenic hyperplasia, which is an organo-pathological criterion for DIC syndrome.

The authors declare the absence of any conflict of interest.

The current studies are at the initiative of the authors and do not have any outside financial support. Research was carried out within the framework of the initiative topic for scientific work “Ecological and biological features of the development of invasive diseases in natural and semi-natural animal populations of the northern regions of Ukraine” (state registration No.0121U109311).

References

