Levels of isoforms of fibronectin and α5/CD49e integrin on lymphocytes and in blood plasma in the conditions of chronic diffuse liver diseases

*Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine, Dnipro, Ukraine
**Institute of Gastroenterology of the National Academy of Medical Sciences of Ukraine, Dnipro, Ukraine
***Oles Honchar Dnipro National University, Dnipro, Ukraine

Article info
Received 30.09.2020
Received in revised form 25.10.2020
Accepted 27.10.2020

Regulatory Mechanisms in Biosystems
ISSN 2519-8521 (Print)
ISSN 2520-2588 (Online)

Chronic diffuse liver diseases are characterized by accumulation of complex inflammatory infiltrate in the liver tissues, blood, and lymph, and activation of the immune system. Leukocytes become involved in the area of inflammation after the activation of receptors of blood adhesia, particularly integrins and their ligands. Plasma lymphocytes quickly activate the function of integrins by changing their conformation, leading to high affinity and underlying the formation of strong stable connection between the components of extracellular matrix. A vitally important role in the process of liver fibrogenesis is performed by a pro-fibrogenic protein fibronectin which induces the expression of collagen genes and precedes the deposition of other components of matrix. The studies were conducted in the group of patients suffering from chronic diffuse liver diseases of non-viral etiology aged 26–60 years, n = 36 and in the group of 15 practically healthy volunteer donors aged 25 to 52 years without a history of liver diseases using the methods of flow cytometry, immunoenzymatic analysis, and quantitative real-time polymerase chain reaction. The patients of the group with chronic diffuse liver diseases were observed to have statistically significant decrease in the concentration of plasmatic form of fibronectin measuring 27.6% compared with the control group. We determined increase in the concentration of cellular fibronectin in blood plasma of patients with the diseases on average accounting for 63.8% compared with the norm, and the highest increase in this parameter equaling 77.2% was seen in patients suffering from drug-induced hepatitis. Significant increase in the level of exposure of cellular FN on blood lymphocytes was determined in patients with chronic diffuse liver diseases, measuring 231.8%, whereas the level of plasmatic form of fibronectin in these cells was decreased (statistically unreliable). For α5-integrin subunit, we determined a 390.8% increase in the level of its exposure in blood lymphocytes in the surveyed groups compared with the control. Level of blood lymphocytes that express the cellular fibronectin significantly decreased by 140.1%. Statistical characteristics of diagnostic possibility of the parameters of level of plasmatic and cellular fibronectin in blood, determined over the analysis of ROC-curves, demonstrated excellent informativeness of these tests. Analysis of the possibility of predicting the presence of pathology using the model of logistic regression revealed zero error of prediction and maximum efficiency of the tests: intensity of exposure of α5-integrin receptor on the surface of lymphocytes, intensity of exposure of plasmatic fibronectin on the surface of lymphocytes, intensity of exposure of cellular fibronectin on the surface of lymphocytes, concentration of plasmatic fibronectin in blood, concentration of cellular fibronectin in blood plasma. These parameters may be proposed for further surveys for developing serologic biomarkers based on the parameters for diagnostics of chronic diffuse liver diseases.

Keywords: plasmatic fibronectin; cellular fibronectin; α5-integrin cellular; ITGA expression; lymphocytes.

Introduction

The most important physiological event during inflammation of the liver is activation of the intrinsic immune system with involvement of plasma leukocytes from the blood flow, their constant migration and fast accumulation in the damaged areas and areas of infection. Neutrophil granulocytes are the commonest leukocytes in the blood flow, first appearing in the damaged or traumatized areas at the early stages of liver inflammation (Koh & DiPietro, 2011). Much less numerous monocytes are activated by interferons produced by T-cells and organize protective structures – granulomas – around antigen. After extravasation, monocytes can differentiate into Kupffer cells of the liver – specialized macrophages which are a part of the reticular endothelial system (Burns et al., 2001). Lymphocytes, unlike granulocytes and monocytes, can recirculate many times over their life: they migrate from blood to the tissue, enter the lymphatic system, percolating the lymph nodes and return to the blood flow. In response to the inflammatory irritants, lymphocytes may accumulate in the damaged areas (Springer, 1995) and directly affect the formation of scars and fibrosis (Koh & DiPietro, 2011).

Accumulation of interstitial leukocytes in the areas of inflammation is preceded by the activation of cellular adhesion receptors such as selectins, integrins and their ligands. Since selectins provide initial binding of leukocytes to the endothelium of the vessels and their removal from the blood flow, the integrins underlie transendothelium migration due to additional interrelations with extracellular matrix and instant changes in the degree of their adhesivity (Burns et al., 2001). Integrin heterodimer molecules transduce bidirectional signals, necessary for fast reaction of cell to change in the environment, through the plasmatic membrane (Hu & Luo, 2013). Leukocytes which circulate the blood flow support their integrins in non-active conformation to avoid contact with undamaged walls of the vessels, but in the conditions of inflammatory processes integrins quickly activate to provide migration to damaged regions (Barreiro & Sánchez-Madrid, 2000). Therefore, decreased level of these molecules on the surface of leukocytes hinders their fast and efficient flow to the areas of inflammation.
without damage to the integrity of endothelial barrier (Springer, 1995). Two-
four weeks after antigen stimulation, αβ3-containing integrins appear on
lymphocytes. They interact with ligands of extracellular matrix: laminin,
collagen and fibronectin, providing migration and accumulation of inters-
titial leukocytes during inflammation (André et al., 2010).

Fibronectin (FN) is a glycoprotein of extracellular matrix which plays
a vitally important role during restoration of the liver tissue. Plasmatic
fibronectin (pFN) is produced by hepatocytes, circulates in plasma in non-
active form, and during tissue damage becomes involved in the fibrin
clots, taking effect on the function of thrombocytes and underlying hemo-
stasis. Cellular FN (cFN) is synthesized by many types of cells, including
fibroblasts, epithelial cells, endothelial cells, leukocytes, etc. It is collected
by cells when they migrate for restoration of the damaged tissue, contrib-
utes to the support of the carcase of the extracellular structure by active
binding with other matrix proteins. Both forms of FN differently express
in time: plasmatic FN circulates in blood constantly and functions at the
early stages of inflammation, whereas cellular FN expresses and accumu-
lates locally in the zones of active morphogenesis and remodeling of the
tissue (Koivisto et al., 2014).

Plasmatic and cellular fibronectins exhibit mutual general structural
organization and immunologic identity. However, unlike the cellular FN,
plasmatic FN lacks EDA and EDB domains and only one of its subunits
has V-region. Change in the structure of cellular FN leads to changes in
kinetic abilities to polymerize into fibril, creating matrix, and increased
expression in cellular fibronectin is distinctive for fibrolithic impairments.
Though the commonest component of fibrosis tissue is collagen, its sedi-
mentation is possible only over formation of fibronectin matrix (Dolghik
et al., 2018). During fibrosis, there occurs notable expression of isoforms
of cellular FN, particularly EDA, EDB and oncothermal IFCEs (To & Mid-
wood, 2011). Leukocytes are known to bind with fibronectin using inte-
grins both due to RGD-sequence and RGD-dependent way. However,
these integrins support fibrillogenesis of fibronectin: there is a presumption
that only αβ3 (VLA-5) integrin takes part over invasion of cells of con-
nective tissue. It is selective only in relation to fibronectin, demonstrates
abilities to efficiently bind with its compact soluble dimmers and assemble
fibrillary matrix. Such interactions provide important data for contractile
organization of cytoskeleton of cells, contribute to adhesion, migration,
survival, proliferation of cells and remodeling of connective tissue (Hve-
neers et al., 2009).

Through RGD motif and αβ3, cellular FN activates transmission of
signals for cellular production of matrix metalloproteinases. They take part
in events of remodelling of extracellular matrix and produce FN fragments
which could additionally stimulate behaviour of cells (Aziz-Seible &
Casey, 2011). Fragmentation of FN is underlain by hydrolysis of flexible
connections in the areas of linkage between functional domains of glyco-
protein. Therefore, N-terminal fragment 70 kDa which contains modules
of I and III types and fibronectin (Lee & Fridman, 2011). At the
beginning of CDLD manifest as hepatic steatosis characterized by increased
deposition of fat in liver cells and increase of the organ. Steatosis can
progress to hepatitis, the condition indicated by clearly manifested in-
flammatory changes. Constant damage causes development of scar tissue
which ultimately can replace functional tissue of the liver, lead to liver
failure, fibrosis and cirrhosis. All pathological conditions include inflam-
atory reaction including healing mechanisms related to expression by
Kupffer cells, and also cells of the immune system of cellular FN. Cellular
FN activates perisinosoidal cells, increases their survivability and leads to
transition of these cells to miofibrolast phenotype through regulated
TGF-β1 mechanism induced by EDA. In turn, activated perisinosoidal cells
are the main sources of intense production of the constituents of the
connective scar tissue (Aziz-Seible & Casey, 2011). Therefore, leukocytes
of the immune system responding to damage of the liver, using a number of
complex signal mechanisms, can initiate significant increase in the
expression of cellular fibronectin, triggering processes that lead to accum-
ulation of fibrosis matrix in the damaged organ.

The objective of the study was determining the diagnostic and predic-
tive efficiency of the parameters of concentration of fibronectin in blood
plasma: level of exposure of pFN, cFN and αβ3 integrin receptor on lymph-
ocytes; amount of lymphocytes, out of their total amount, which expose
pFN, cFN and αβ3 over chronic diffuse liver diseases, namely non-
alcohol fatty liver disease (steatosis), steatohepatitis, alcoholic liver dise-
ase, drug-induced hepatitis.

Materials and methods

The research was carried out following the bioethical norms accord-
ing to the regulations of WHO, Helsinki Declaration of General Assembly
of World Medical Association (1989), Convention of the European
Council on Human Rights and Biomedicine (1977), Council for Interna-
tional Organizations of Medical Sciences, International Code of Medical
Ethics (1983), current legislation of Ukraine, as confirmed by the Commit-
tee of Bioethics of the Dnipropetrovsk Medical Academy of the Ministry
of Healthcare of Ukraine. Informed consent was received from all the
subjects of blood withdrawal. Blood was withdrawn in the morning at the
same time from the intermediate basilic vein of patients on an empty
stomach in the amount of 15 mL. For this purpose, we used disposable test
wells with anticoagulants K3EDTA and K3EDTAD the colour of the cap
of test tubes was violet. In the same way, blood samples were withdrawn from
healthy donors.

We surveyed blood from patients suffering from chronic diffuse liver
diseases aged 28–60 years who were at the treatment hospital in the De-
partment of the Liver and Pancreas Diseases at the Institute of Gastroen-
terology of the National Academy of Medical Sciences of Ukraine, par-
ticularly 36 patients with CLD, including: patients with non-alcoholic fatty
liver disease steatosis, steatohepatitis (NAFLD) n = 12, patients with steatohepatitis
(SH) n = 13, patients with drug-induced hepatitis (DISH) n = 6, patients
with alcoholic hepatitis (ASH) n = 5. The control group comprised
15 clinically healthy volunteer donors (PHD) at the age of 25–52 years
without history of liver diseases or other immune diseases.

Part of venous blood was centrifuged over 10 min at 3,000 rpm on
centrifuge CLMN-P10-01 Elekon (Liston, Russia), isolated plasma was
divided into aliquots and kept in –76 °C in Eppendorf test tubes for further
analysis of the levels of plasmatic and cellular fibronectins. From the other
part of blood, we isolated fraction of lymphocytes for survey of exposure
of two forms of fibronectin and subunit of its αβ3/CD49e integrin receptor.
Fraction of lymphocytes was selected by isolating cells using Ficol-Paque
1.077 density gradient. For this purpose blood was held for 40–60 min at
room temperature until clear separation of erythrocytes and plasma.
To prepare lysing solution with density gradient measuring 1.077 g/cm3,
we used Ficol-400 (Pharmacia Fine Chemicals, Sweden) and Triomorph
(Farmak, Ukraine).

To centrifugation test tubes for density gradient we added a layer of
obtained plasma with the upper layer of erythrocytes; ratio of gradient
and plasma equaled 1:2. Test tubes were centrifuged in a bucket-rotor
with acceleration of 1,500–1,800 rpm over 40 min at a temperature of 20 °C.
After separation of plasma and fraction of lymphocytes with inclusions
of monocytes, cells were rinsed three times using buffered normal saline
(BNS) with subsequent centrifugation over 2 min at 2,400 rpm. After
rinsing, we prepared the aliquots of operational concentrations of lympho-
ocytes with BNS (300 thous/mL in each sample). Vitility of the cells (over
90%) was determined using trypan blue (Novikov & Novikova, 1996).
Levels of cFN- and pFN-positive lymphocytes were determined using the
method of flow cytometry with primary antibodies: mouse monoclonal
IgG to cell-binding FN fragment (FN30-8; M010 TaKaRa Shuzo
Co., Ltd., Shiga, Japan) and rabbit polyclonal antibodies to FN (ab2413; Abcam, Cambridge, UK), respectively. As secondary antibodies we used fluorescein isothiocyanate (FITC), conjugated goat anti-mouse IgG antibodies (H+L) (A16067; ThermoFisherScientific, US) and goat anti-rabbit IgG antibody, labeled with phycoerythrin – PE (F0609, SantaCruzBio-technology, USA), respectively. To determine the level of exposure of integrin receptor we used goat polyclonal anti-integrin α5, CD49e antibodies (AF1864, R&D Systems, US) and respectively donkey anti-rabbit IgG (H+L), labeled with phycoerythrin (PA1-29953; Thermo Fisher Scientific, US). Control of dead cells was made after binding with propidium iodide. The data were recorded on a flow cytometer Beckman Coulter EPICS (Beckman Coulter, USA, 2001). The density of exposure was calculated according to FCS Express 3 software (De Novo Software, USA, 2001).

Levels of pFN and cFN in blood were determined using the enzyme-linked immunosorbent assay (ELISA) with specific antibodies. The stages of ELISA included: preparation of microplate for adsorption of proteins; incubation of control and experimental samples for 2 h at a temperature of 37 ºC followed by rinsing; incubation with secondary antibodies for 2 h in 37 ºC followed by rinsing in TBP. In the case of cellular FN, the monoclonal antibodies provided adhesion with RGD-cell binding domain located in the center of this glycoprotein (FN30-8; M010 TakRaShu Shozo Co., Ltd., Shiga, Japan), in the case of plasmatic FN – with all binding sites in fibronectin (ab2413; Abcam, Cambridge, UK). Antibodies were diluted in the proportion of 1:5,000 according to the manufacturer’s guidelines TBP. To determine the amount of fibronectins bound with primary antibodies, we used secondary antibodies: goat antibodies to mouse IgG, labeled with horseradish peroxidase (HRP) for cellular FN (A16066, Thermo Fisher Scientific, US), diluted in the proportion of 1:4,000 and goat anti-rabbit immunoglobulins conjugated with horseradish peroxidase for plasmatic FN (31466, ThermoFisherScientific, US), diluted in 1:3,000 proportion. For calorimetric determination of absorption, into the microplate wells, solution of coloridihydrochloride o-phenylenediamine (OPD) was added with 9% solution of H2O2, the reaction was stopped with 2 N solution of H2SO4. Optical density of the examined samples was determined using spectrophotometer for reading Humareader microplates (Human, Germany, 2001) at the wavelength of 492 nm.

Analysis of fibronectin expression was performed using quantitative real-time polymerase chain reaction (PCR). Isolation of RNA from lymphocytes was carried out using Trizol reagent (Invitrogen, USA). For this purpose, to the suspension of lymphocytes, we added 80 µL of Trizol reagent, mixed, and added 20 µL of chloroform, mixed again and centrifuged at 16,000 g and +4 ºC over 10 min. We selected 50 µL of supernatant solution, incubation with primary antibodies for 12 h at the temperature of 37 ºC followed by rinsing; incubation with secondary antibodies for 2 h in 37 ºC followed by rinsing in TBP. For calorimetric determination of absorption, into the microplate wells, solution of coloridihydrochloride o-phenylenediamine (OPD) was added with 9% solution of H2O2, the reaction was stopped with 2 N solution of H2SO4. Optical density of the examined samples was determined using spectrophotometer for reading Humareader microplates (Human, Germany, 2001) at the wavelength of 492 nm.

Results

In the patients with chronic diffusive diseases of the liver, compared with healthy donors, we observed decrease in the level of ITGAS mRNA expression by 11.0%. Expression of ITGAS (integrin, alpha 5 (fibronectin-receptor, alpha9, alpha5) in blood lymphocytes was determined in relation to the beta-actin mRNA expression as the control gene.

Analysis of density of exposure of fibronectin on lymphocytes demonstrated dependence of their distribution on the type of fibronectin (Table 1). We reliably determined exposure of cellular fibronectin to significantly increase in case of chronic diffusive liver diseases compared with the control group, particularly by 231.8% (P < 0.001), whereas insignificant decrease in exposure of plasmatic form of FN exhibited statistically insignificantly different values. For α5-integrin subunit, we determined significant increase in the exposure, measuring 390.8% (P < 0.001) on lymphocytes in the presence of chronic diffusive liver diseases (Table 1).

We also recorded statistically reliable decrease in the content of cellular FN-expressing lymphocytes, being at the level of 140.1% (P < 0.001), intensity of protein exposure on blood lymphocytes is presented in Figure 1. The values of the area from ROC-curve were interpreted in the parameters of diagnostic accuracy: 0.91–1.00 – excellent, 0.81–0.90 – very good, 0.71–0.80 – good, 0.61–0.70 – average, 0.51–0.60 – unsatisfactory; value of 0.50 corresponds to inapplicability of the model. The cutoff point was calculated using the Youden method. To develop the box-plot graphs we used R software pack for statistical analysis of the data (Lang & Seski, 2011). To determine the probability of pathological condition and determining optimum combination of tests, we used the model of logistic regression as classifier (Logit Model). To implement the model we used Starts library of R pack. This model shows equally effective results both in the normal distribution of independent variables and in the opposite case. It predicts the possibility of pathology through the use of continuous independent variables, both alone, and with a group of parameters simultaneously.

In the patients with chronic diffusive diseases of the liver, compared with healthy donors, we observed decrease in the level of ITGAS mRNA expression by 11.0%. Expression of ITGAS (integrin, alpha 5 (fibronectin-receptor, alpha9, alpha5) in blood lymphocytes was determined in relation to the beta-actin mRNA expression as the control gene.

Analysis of density of exposure of fibronectin on lymphocytes demonstrated dependence of their distribution on the type of fibronectin (Table 1). We reliably determined exposure of cellular fibronectin to significantly increase in case of chronic diffusive liver diseases compared with the control group, particularly by 231.8% (P < 0.001), whereas insignificant decrease in exposure of plasmatic form of FN exhibited statistically insignificantly different values. For α5-integrin subunit, we determined significant increase in the exposure, measuring 390.8% (P < 0.001) on lymphocytes in the presence of chronic diffusive liver diseases (Table 1).

We also recorded statistically reliable decrease in the content of cellular FN-expressing lymphocytes, being at the level of 140.1% (P < 0.001), intensity of protein exposure on blood lymphocytes is presented in Figure 1. The values of the area from ROC-curve were interpreted in the parameters of diagnostic accuracy: 0.91–1.00 – excellent, 0.81–0.90 – very good, 0.71–0.80 – good, 0.61–0.70 – average, 0.51–0.60 – unsatisfactory; value of 0.50 corresponds to inapplicability of the model. The cutoff point was calculated using the Youden method. To develop the box-plot graphs we used R software pack for statistical analysis of the data (Lang & Seski, 2011). To determine the probability of pathological condition and determining optimum combination of tests, we used the model of logistic regression as classifier (Logit Model). To implement the model we used Starts library of R pack. This model shows equally effective results both in the normal distribution of independent variables and in the opposite case. It predicts the possibility of pathology through the use of continuous independent variables, both alone, and with a group of parameters simultaneously.
increase in the cFN content at the level of 77.2% was observed in patients suffering from drug-induced hepatitis, whereas in the groups of SS, SH patients with ASH and DISH displayed pFN content lower than the norm, of pFN. For the cellular form of fibronectin we determined concentration 1.71 ± 0.05 µg/mL. At the same time, we recorded increase in the concen-

Table 1
Statistical characteristics of exposure of plasmatic fibronectin, cellular fibronectin, α5-subunit of integrin receptor on lymphocytes of blood plasma from patients suffering from chronic diffuse liver diseases and the amount of lymphocytes which expose the surveyed proteins (n = 13)

<table>
<thead>
<tr>
<th>The surveyed parameter</th>
<th>Characteristic of group of examined donors</th>
<th>x ± SE</th>
<th>Median</th>
<th>25%-75%</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of lymphocytes, out of their total amount, with plasmatic FN on the surface, %</td>
<td>control group of clinically healthy donors</td>
<td>53.4 ± 1.4</td>
<td>54.2</td>
<td>49.8-57.3</td>
<td>41.9-59.4</td>
</tr>
<tr>
<td></td>
<td>group of patients with steatohepatitis</td>
<td>99.3 ± 2.2</td>
<td>58.9</td>
<td>52.2-65.9</td>
<td>46.2-71.0</td>
</tr>
<tr>
<td>Content of lymphocytes, out of their total amount, with cellular FN on the surface, %</td>
<td>control group of clinically healthy donors</td>
<td>88.6 ± 1.4</td>
<td>88.0</td>
<td>85.0-90.0</td>
<td>81.0-100.0</td>
</tr>
<tr>
<td></td>
<td>group of patients with steatohepatitis</td>
<td>36.9 ± 1.3 **</td>
<td>36.0</td>
<td>35.0-41.0</td>
<td>28.0-45.0</td>
</tr>
<tr>
<td>Contents of lymphocytes, out of their total content, with α5-integrin subunit, %</td>
<td>control group of clinically healthy donors</td>
<td>97.6 ± 0.4</td>
<td>98.0</td>
<td>96.6-98.4</td>
<td>95.0-100.0</td>
</tr>
<tr>
<td></td>
<td>group of patients with steatohepatitis</td>
<td>98.7 ± 0.2</td>
<td>98.7</td>
<td>98.2-99.1</td>
<td>97.0-100.0</td>
</tr>
<tr>
<td>Intensity of exposure of plasmatic FN on the surface of lymphocytes, mV</td>
<td>control group of clinically healthy donors</td>
<td>54.3 ± 1.3</td>
<td>55.3</td>
<td>52.3-57.2</td>
<td>41.9-59.3</td>
</tr>
<tr>
<td></td>
<td>group of patients with steatohepatitis</td>
<td>53.2 ± 0.7</td>
<td>52.4</td>
<td>51.5-54.6</td>
<td>50.2-59.3</td>
</tr>
<tr>
<td>Intensity of exposure of cellular FN on the surface of lymphocytes, mV</td>
<td>control group of clinically healthy donors</td>
<td>36.1 ± 0.6</td>
<td>36.5</td>
<td>34.5-37.5</td>
<td>32.0-39.5</td>
</tr>
<tr>
<td></td>
<td>group of patients with steatohepatitis</td>
<td>119.8 ± 1.2 **</td>
<td>120.0</td>
<td>116.0-122.0</td>
<td>112.0-128.0</td>
</tr>
<tr>
<td>Intensity of exposure of α5-integrin subunit on the surface of lymphocytes, mV</td>
<td>control group of clinically healthy donors</td>
<td>87.2 ± 0.9</td>
<td>87.0</td>
<td>85.0-90.0</td>
<td>82.0-93.0</td>
</tr>
<tr>
<td></td>
<td>group of patients with steatohepatitis</td>
<td>428.0 ± 1.8 **</td>
<td>429.0</td>
<td>425.0-433.0</td>
<td>413.0-457.0</td>
</tr>
</tbody>
</table>

Note: *** – P < 0.001 compared with the control group (PHD) according to Tukey test with Bonferroni correction.

In the groups of ASH and SS we found patients with significantly decreased parameters of pFN concentration measuring respectively 120 and 126 µg/mL, which corresponds to an almost two-fold decrease in the content compared with the HD group. All the samples from the groups of patients with ASH and DISH displayed pFN content lower than the norm, while in the NAFLD group 25% of the samples of plasma samples from the patients had the parameters which corresponded to the normal content of pFN. For the cellular form of fibronectin we determined concentration in the blood plasma for the group of clinically healthy donors equaling 1.71 ± 0.05 µg/mL. At the same time, we recorded increase in the concentration of cellular fibronectin in the plasma in the presence of CDLD compared with the norm measuring on average 63.8% (Fig 2b). The greatest increase in the cFN content at the level of 77.2% was observed in patients suffering from drug-induced hepatitis, whereas in the groups of SS, SH and ASH the content of cellular fibronectin increased respectively by 56.7%, 70.2% and 50.9%. Maximum increase in the concentration of plasmatic cFN compared with the control values was determined in patient of NAFLD group, equaling 217.2%. Analysis of the parameters of concentrations of pFN and cFN between the groups of patients suffering from chronic diffuse liver diseases revealed no statistically significant differences (P > 0.05). Statistical characteristics of diagnostic possibility of the content of plasmatic and cellular FN in plasma, determined using the analysis of ROC-curves, indicate the excellent informativeness of these parameters. Test of concentration of cFN has maximum diagnostic efficiency, Se = 1.0, Sр = 0.944, AUC = 0.944. Concentration below this level may indicate possibility of pathology. Se = 1.0, Sр = 0.944, AUC = 0.944 (Youden index equaling 0.943), decrease in the concentration below this level may indicate possibility of pathology. Se = 1.0, Sр = 0.944, AUC = 0.944 (P < 0.001).

Fig. 1. Intensity of fluorescence (mV) of antibodies to cellular fibronectin (a) and integrin subunit (b) on the surface of lymphocytes in clinically healthy donor (black line) and patient with chronic diffuse liver disease (red line) according to the data of flow cytometry on Beckman Coulter EPICS; density of exposure was calculated in FCS Express 3 software

Fig. 2. Concentrations of plasmatic (a) and cellular (b) fibronectin in blood plasma of the groups of clinically healthy donors (HD) and patients with chronic diffuse liver diseases; SS – patients with steatosis, SH – patients with steatohepatitis, DISH – patients with drug-induced hepatitis, ASH – patients with alcoholic hepatitis; **** – P < 0.001 compared with the control group (HD) according to Tukey test with Bonferroni correction.
Analysis of ROC-curves of the tests of immune cells displayed the greatest efficiency of the following tests: content of lymphocytes with surface-associated cellular FN, intensity of exposure of cellular FN on the surface of lymphocytes and intensity of exposure of α5 on the surface of lymphocytes: Se = 1.0, Sp = 1, AUC = 1. Cutoff points equal respectively: 88.0%, 112 mV and 413 mV. Test for the content of lymphocytes with associated plasmatic isoform of FN on the surface indicated the following data: Se = 0.615, Sp = 0.46, AUC = 0.722 (P = 0.033), good diagnostic accuracy, cutoff point of 57.8%. Test of the content of lymphocytes, out of the total amount, with α5-subunit on the surface indicated reliability at the level: Se = 0.769, Sp = 0.692, AUC = 0.742 (P = 0.016), good diagnostic accuracy, cutoff point equaling 98.2%. Average diagnostic reliability was exhibited by test of intensity of exposure of plasmatic FN on the surface of lymphocytes: Se = 0.769, Sp = 0.615, AUC = 0.672 (P = 0.136), cutoff point of 53.2 mV (Fig. 3).

The greatest correlational dependence was detected between the tests of intensity of exposure of plasmatic form of fibronectin on the surface of lymphocytes and the content of lymphocytes which express α5-subunit: the relationship of correlation was reverse, Spearman coefficient was very close to the lower value of the range with strong correlational relationship (ρ = -0.6804; P = 0.011). A positive correlational relationship of average strength was determined between the test of the level of concentration of cellular FN in plasma and the intensity of exposure of cellular FN by lymphocytes (ρ = 0.5517; P = 0.049). We should also note the direct correlational average-strength dependence between the intensity of exposure of cellular FN on lymphocytes and the intensity of exposure of integrin subunit by lymphocytes and concentration of cFN in plasma, though statistical levels of significance in these tests exceed the threshold value (P > 0.05).

Analysis of possibility of predicting presence of CDLD using the model of logistic regression revealed that the highest effectiveness was displayed by the following tests: intensity of exposure of α5-subunit on the surface of lymphocytes, intensity of pFN exposure on surface of lymphocytes, intensity of cFN exposure on the surface of lymphocytes, concentration of plasmatic FN in blood plasma, concentration of cellular FN in blood plasma. Error of prediction using these parameters equals zero. Other survey tests had efficiency of prediction of around 60–70%, namely: error of prediction for the content of lymphocytes with activated α5-subunit on the surface equaled 27.1%, for the content of lymphocytes with membrane-associated pFN on the surface – 38.5%, for pFN exposure on lymphocytes – 30.8%. Form of the graphic curves allows us to evaluate the predictive ability of the tests (Fig. 4).

Fig. 3. ROC-curves of use of informativeness of parameters of the levels of pFN concentration in blood plasma (a), level of cFN concentration in plasma (b), share of lymphocytes, out of their total amount, with membrane-associated plasmatic FN on the surface (c) and content of lymphocytes with membrane-associated α5-integrin subunit on the surface (d).

Fig. 4. Logistic curves of prediction of presence of CDLD using model of logistic regression for the tests: intensity of exposure of α5-subunit on the surface of lymphocytes; wrongly classified objects on 4b graph are indicated with dark colour.
wound healing is played by fibronectin which is a profibrinogenic protein (Rodríguez-Juan et al., 2009). Plasmatic FN circulates in the blood in fibronec-tin on the surface and content of lymphocytes with plasmatic fibronec-tin on the surface are close to a straight line, indicating the low prediction ability of the surveyed parameters for predicting presence of chronic dif-fuse liver diseases.

Discussion

Chronic diffuse liver diseases as a result of long activation of the healing reaction are characterized by several important traits: continuous cho-ro-nic damage of hepatocytes; accumulation of complex inflammation in-fliterate in the liver tissues, blood and lymph, activation of different types of ECM-producing cells with proliferative, synthetic and contractile abilities (Sverglioli-Baroni et al., 2008). A vitally important role in the process of wound healing is played by fibronectin which is a profibrinogen protein which induces the expression of collagen genes and precedes the deposition of other ECM components in the process of liver fibrogenesis (Rodríguez-Juan et al., 2009). Plasmatic FN circulates in the blood in inactive form and is stored in α-granules of thrombocytes until being activated by reaction to a wound. The main sources of plasmatic fibronectin are liver hepatocytes, from where it is secreted into the blood flow for distribution across the whole organism. Cellular fibronectin is produced both locally in the tissues, and is synthesized by various cells, assemblies in complex fibrillary matrix on the surface of cells and regulates deposition of other ECM proteins, and also migration, adhesion, differentiation of cells, etc. (To & Midwood, 2011). In the normal physiological conditions, there is a balance between both types of fibronectin in the blood flow and intact tissue, whereas in certain conditions of inflammation or damage, the contents of both pFN and cFN may significantly change.

The data we obtained indicate benefits from the fact that chronic dif-fuse liver diseases of non-viral etiology in most cases are accompanied by decrease in the content of plasmatic form of FN in blood flow. De-crease in concentration of the protein was determined for almost all pa-tients suffering from steatosis which usually is asymptomatic stage of the disease. As the disease develops, the number of patients with reduced FN concentration increased. Therefore, in the group with steatosis, for 32% of disease. As the disease develops, the number of patients with reduced FN contents of both pFN and cFN may significantly change.

As known, integrins which express in circulating lymphocytes are in-active and do not provide adhesion. In the conditions of inflammatory pro cesses, the cells become subjected to the influences of various irritants, including chemokines which quickly activate the function of integrins through modulation of LFA-1, which is an antigen related to the function of lymphocytes (Kinashi, 2005). Activation of α5β1 leads to change in conformation of integrin, emergence of high affinity to its classical ligand of fibronectin way of recognizing Arg-Gly-Asp motif and underlies the creation of a strong stable relationship and avidity of the complex (Chan et al., 2003). In these adhesive complexes, cytoplasmatic tails of α5β1 are related with active cytoskeleton and internal signal molecules, which is the key for the assembly of the matrix. Interaction of integrins with cytoskele-ton allows the receptors to move through active filaments, unwinding the bound molecules of fibronectin and thus stimulating fibrilogenesis. In turn, the structure of matrix is essential for further cellular events (Ma-chado-Pineda, 2018).

Exchange of information between inside and out occurs through activa-tion of specific signaling molecules such as FAK and Rho (Schwarz-bauer & DeSimone, 2011). Functional responses of leukocytes which occur as a result of transduction of signals outside-in include migration, prolification, secretion of cytokines, degranulation (Abram & Lowell, 2009). Increase in the level of exposure of α5β1 on one hand and its activa-tion on the other hand require increased demand for fibronectin, which may be one of the reasons for decrease in plasmatic Fn in plasma, because particularly this soluble form of glycoprotein of plasma is first to contact the activated α5β1 lymphocytes with following initiation of unfolding of globular structure and open domains for support of polymerization (Zhou et al., 2008). In turn, pFN monomers initiate α5β1-dependent signaling cascades, for expression of cellular isoforms of ED1, EDB. Therefore, the study on expression of FNS forms by endothelial cells revealed that fibril-logenesis of FN on cells first of all requires obligatory endogenic produc-tion of matrix protein, and secondly that only polymerization of cellular forms of FN provides enough adhesive ligands for productive interaction with cellular receptors and components of the matrix, increases bioavail-ability of antiangiogenic factors, including VEGF and FGF-2 (Cshe et al., 2010). The survey of lymphocytes in our laboratory revealed that in condi-tions of chronic diffuse liver diseases, the exposure of cellular FN increa-ses by 3.3 times compared with the control group, and α5-integrin subunit increases by 4.9 times.
The advantages of non-invasive methods of monitoring of chronic diffuse liver diseases include absence of complications and contraindications, safety, possibility of use for assessment of dynamics. Currently, there is known a whole panel of serologic biomarkers of CDLD, particularly: alanine amino transferase (ALT), aspartate aminotransferase (AST), hyaluronic acid, I and III types procollagen peptides, IV type collagen, growth factor β (TGF-β), matrix metalloproteinas MMP-2 and MMP-9, inhibitor of metalloproteinase-1 (TIMP-1), etc. These markers are most relevant and are traditionally applied to diagnose chronic diffuse liver diseases (Didenko et al., 2014), but the search for new indicators with sufficient level of sensitivity and specificity continues. Such a search for plasmatic and clinical markers based on the data of hemotological analysis has been made by the staff of our laboratory for many years. We surveyed the levels of mRNA fibronectin expression and its exposure on lymphocytes, monocytes and granulocytes of blood plasma in conditions of cirrhoses and fibrosis, activity of cysteine cathepsins in blood plasma and inhibitors of proteolysis of α1-antiprisan and α2-macroglobuline (Dolgikh et al., 2020). According to the results of the presented survey, we found statistically significant changes in the concentrations of plasmatic and cellular forms of fibronectin in blood plasma of patients with CDLD of non-virulent etiology, level of exposure of fibronectin and α5β1-integrin on the surface of cells of immune system of lymphocytes. These indicators can be proposed for further surveys with the purpose of creating new biomarkers based on them.

Conclusions

Use of biochemical and molecular-biological methods such as flow cytometernamey, polymerase chain reaction, ELISA and Western-blotting allowed us to study free and cell-bound forms of fibronectin, its integrin receptor in the group of patients with chronic diffuse liver diseases of non-virulent etiology. Such complex approach allowed us not only to compare and evaluate these parameters, but also to differentiate the most important of them from the diagnostic perspective using modern methods of statistical analysis. According to ROC-analysis, the levels of plasmatic and cellular fibronectins have diagnostic possibility and excellent predictive informativeness. At the same time, the patients with CDLD had opposite changes in their contents – the level of plasmatic fibronectin increased, while the level of cellular FN, by contrast, increased. The obtained results provide a basis for further studies, particularly the search for coefficients of relationships between these parameters using a broader variety of selection of patients. Using the model of logistic regression the greatest efficiency in predicting CDLD wassem in the parameters obtained using flow cytometernamey, particularly increase in the levels of exposure of α5-integrin subunit and cellular fibronectin on blood lymphocytes. The results of the surveys allows us to propose the abovementioned parameters as additional ones for diagnosing chronic diffuse liver diseases, especially their asymptomatic stages using only the patient’s blood, thus avoiding pancretasies, which has a number of side-effects.

The article was prepared according to the plans of Scientific-Research Works of the State Institution Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine, which is a fragment of the complex Scientific-Research Work “Structural-Regul. Mech. Biosyst., 2020, 11(4) functional changes in proteins in the conditions of oxidative-carbon stress and their correction using therapeutic measures” (State Registration No 0199/0060252), and the Institute of Gastroenterology of the National Academy of Medical Sciences of Ukraine “To study the clinical, biochemical and structural features of the formation of steatosis and fibrosis in patients with chronic diffuse liver disease” (State Registration No 0118/001834).

References

Abram, C. L., & Lowell, C. A. (2009). The ins and outs of leukocyte integrin signa-

Barrero, O., & Sánchez-Madrid, F. (2009). Molecular basis of leukocyte-endothelium interactions during the inflammatory response. Revista Española de Cardiol-
ología, 62(6), 552–562.

Chan, J. R., Hyduk, S. J., & Cybulsky, M. I. (2003). Detecting rapid and transient upregulation of leukocyte integrin affinity induced by chemokines and che-

Cus, B., Fernandez-Sauze, S., Domineque Grauf, D., Schaub, S., Dorna, E., & Ob-

Didenko, V. I., Klenina, I. A., & Osyshynska, N. Y. (2014). Morfolohicheskaja i byokhimicheskaja otsenka prehrenoviszenia khronicheskago hepatita assozi-

techeskye determinirovannye osobennosti vlijaniya molekul'noj struktury ot-
del'nyh izoform fibronektina na patogenezi zakhvatiyushego processa moat-
tra za organizme (obor literatura) [Genetically determined features of the influence of the molecular structure of individual fibronectin isoforms on patho-
genically significant metabolic processes in the body (literature review)]. Labo-

Dolgikh, H. V., Maslak, H. S., denko, V. I., Klenina, I. A., & Abraimova O. E. (2020). Aktivnyit' katepsin BN L i H v plazmi krusi y patients' z khronich-

99 (in Ukrainian).

