Combined effect of glyphosphate, saccharin and sodium benzoate on rats

Keywords: herbicide; glyphosphate; cholesterol; biochemical parameters of blood; relative mass of the organ

Abstract

Herbicides and food additives are included in many food products for humans. Non-used products or products beyond their expiry date are deposited in places of utilizatioin of solid municipal wastes, where they can take effects on the organisms of mouse-like rodents. Among the herbicides, glyphosphate takes first place in the world for volume of production, and is the most intensely used in agricultural farming. The discussion about negative impact on the organisms of mammals, especially against the background of using various substances and environmental factors, continues. In this study, we determined the combined effect of glyphosphate and food additives on the organism of laboratory animals, which manifested in changes in body weight, condition and indices of mass of the internal organs and blood parameters. Four groups of laboratory male rats were formed, which over 42 days received: unlimited access to clean water; 1% aqueous solution of glyphosate; 1% solution of glyphosphate and 1% solution sodium benzoate; 1% solution of glyphosphate with 1% solution of saccharin. Glyphosphate and glyphosphate with sodium benzoate and saccharin significantly reduced the daily increases in body weight of animals compared to the control group. The studied substances have notable suppressive effect on the immune system and haematopoiesis in general, which is manifested in reduce of relative mass of the thymus and spleen against the background of increase in the amount of lymphocytes in the peripheral blood. The inhibition of haematopoiesis is indicated by decrease in the amount of erythrocytes, neurophils and hemoglobin of blood of animals from the experimental groups. The impact on the digestive system of glyphosphate and food additives is indicated by occurance of the effect of “irritation” of mucous membranes, and, as a result, disorders in absorption followed by the disorder in metabolic processes. A dysbalance occurs in enzymic systems of the organism, which is manifested in distrophic processes, especially in the liver parenchyma, indicated by the activity of blood enzymes (ALT, AST, alkaline phosphatase), total number and ratio of proteins of blood plasma. We determined the impact of glyphosphate and its mixes with benzoate and saccharin on the pancreas, which manifests in severe pancreatitis with steep increase in the level of glucose of blood. The results of the study allow us to state that mixture of glyphosphate and food additives can cause toxic effect in animals and humans, which often contact with herbicides.

References

Arese, P., Gallo, V., Pantaleo, A., & Turrini, F. (2012). Life and death of glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes role of redox stress and band 3 modifications. Transfusion Medicine and Hemotherapy, 39(5), 328–334.


Dotsenko, O. I., Dragushenko, O. O., & Dotsenko, V. A. (2010). The investigation of the action of prooxidant and cytotoxic systems Cu2+–AscH, Cu2+–AscH–o-phenanthroline [Doslidzhennia prooksydantnoi ta tsytotoksychnoi dii system Cu2+–AscH, Cu2+–AscH–o-phenanthroline]. Dosiahnennia Biolohii ta Medytsyny, 15(1), 1–7 (in Ukrainian).


Dotsenko, O. I. (2015). Glutathione system’s activity in the blood of mice in the conditions of vibration stress [Aktivnost' sistemy glutationa krovi myshej, nahodjashhihsja v uslovijah vibracionnogo stressa]. ScienceRise, 11(16), 39–46 (in Russian).


Carelli-Alinovi, C., & Misiti, F. (2017). Erythrocytes as potential link between diabetes and Alzheimer's disease. Frontiers in Aging Neuroscience, 25(9), 276–286.


Chikezie, C. P. (2011). Glutathione S-transferase activity of human erythrocytes incubated in aqueous solutions of five antimalarial drugs. Free Radicals and Antioxidants, 1(2), 26–30.


Corti, A., Casini, A. F., & Pompella, A. (2010). Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Archives of Biochemistry and Biophysics, 500, 107–115.


Giustarini, D., Colombo, G., Garavaglia, M. L., Astori, E., Portinaro, N. M., Reggiani, F., Badalamenti, S., Aloisi, A. M., Santucci, A., Rossi, R., Milzani, A., & Dalle-Donne, I. (2017). Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radical Biology and Medicine, 112, 360–375.


Crane, F. L., Crane, H. E., Sun, I. L., MacKellar, W. C., Grebing, C., & Löw, H. (1982). Insulin control of a transplasma membrane NADH dehydrogenase in erythrocyte membranes. Journal of Bioenergetics and Biomembranes, 14(5–6), 425–433.


Hiroshige, Y. (1980). The effects of copper and copper-o-phenanthroline complex on the intact human erythrocytes. The Tohoku Journal of Experimental Medicine, 130, 385–402.


Kennett, E. C., & Kuchel, P. W. (2006). Plasma membrane oxidoreductases: Effects on erythrocyte metabolism and redox homeostasis. Antioxidants and Redox Signaling, 8(7–8), 1241–1247.


Kuhn, V., Diederich, L., Keller, T. C. S. IV, Kramer, C. M., Lückstädt, W., Panknin, C., Suvorava, T., Isakson, B. E., Kelm, M., & Cortese-Krott, M. M. (2017). Red blood cell function and dysfunction: Redox regulation, nitric oxide metabolism, anemia. Antioxidants and Redox Signaling, 26(13), 718–742.


Li, H., Tu, H., Wang, Y., & Levine, M. (2012). Vitamin C in mouse and human red blood cells: An HPLC assay. Analytical Biochemistry, 426(2), 109–117.


Lu, Y. X., Wu, Q. N., Chen, D. L., Chen, L. Z., Wang, Z. X., Ren, C., Mo, H. Y., Chen, Y., Sheng, H., Wang, Y. N., Wang, Y., Lu, J. H., Wang, D. S., Zeng, Z. L., Wang, F., Wang, F. H., Li, Y. H., Ju, H. Q., & Xu, R. H. (2018). Pharmacological ascorbate suppresses growth of gastric cancer cells with GLUT1. Overexpression and enhances the efficacy of oxaliplatin through redox modulation. Theranostics, 8(5), 1312–1326.


Acquavella, J. F., Alexander, B. H., Mandel, J. S., Gustin, C., Baker, B., Chapman, P., & Bleeke, M. (2004). Glyphosate biomonitoring for farmers and their families: Results from the farm family exposure study. Environmental Health Perspectives, 112(3), 321–326.


Acquavella, J. F., Weber, J. A., Cullen, M. R., Cruz, O. A., Martens, M. A., Holden, L. R., Riordan, S, Thompson, M., & Farmer, D. (1999). Human ocular efects from self-reported exposures to Roundup® herbicides. Human and Experimental Toxicology, 18(8), 479–486.


Adam, A., Marzuki, A., Abdul Rahman, H., & Abdul Aziz, M. (1997). The oral and intratracheal toxicities of Roundup and its components to rats. Veterinary and Human Toxicology, 39(3), 147–151.


Adeola, A. A., & Aworh, O. C. (2013). Effects of sodium benzoate on storage stability of previously improved beverage from tamarind (Tamarindus indica L.). Food Science and Nutrition, 2(1), 17–27.


Amerio, P., Motta, A., Toto, P., Pour, S. M., Pajand, R., Feliciani, C., & Tulli, A. (2004). Skin toxicity from glyphosate-surfactant formulation. Journal of Toxicology: Clinical Toxicology, 42(3), 317–319.


Bakali, E., Hong, J., Gillespie, J., & Tincello, D. (2016). Saccharin increases perception of bladder filling in a forced diuresis experiment. Neurourology and Urodynamics, 36(5), 1363–1368.


Bates, N., & Edwards, N. (2013). Glyphosate toxicity in animals. Clinical Toxicology, 51(10), 1243–1243.


Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(3), 1–15.


Behrens, M., Blank, K., & Meyerhof, W. (2017). Blends of non-caloric sweeteners saccharin and cyclamate show reduced off-taste due to TAS2R bitter receptor inhibition. Cell Chemical Biology, 24(10), 1199–1204.


Bradberry, S. M., Proudfoot, A. T., & Vale, J. A. (2004). Glyphosate poisoning. Toxicological Reviews, 23(3), 159–167.


Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017a). The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One, 12(6), e0178426.


Bian, X., Tu, P., Chi, L., Gao, B., Ru, H., & Lu, K. (2017b). Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 107, 530–539.


Bissonnette, D. J., List, S., Knoblich, P., & Hadley, M. (2017). The effect of nonnutritive sweeteners added to a liquid diet on volume and caloric intake and weight gain in rats. Obesity, 25(9), 1556–1563.


Bolognesi, C., Carrasquilla, G., Volpi, S., Solomon, K. R., & Marshall, E. J. P. (2009). Biomonitoring of genotoxic risk in agricultural workers from five Colombian regions: Association to occupational exposure to glyphosate. Journal of Toxicology and Environmental Health, Part A, 72(15–16), 986–997.


Bourie, F., Olsson, K., Iskhakov, B., Buras, A., Fazilov, G., Shenouda, M., Zhezherya, J., & Bodnar, R. J. (2017). Murine genetic variance in muscarinic cholinergic receptor antagonism of sucrose and saccharin solution intakes in three inbred mouse strains. Pharmacology Biochemistry and Behavior, 163, 50–56.


Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.


Brumovský, M., Bečanová, J., Kohoutek, J., Borghini, M., & Nizzetto, L. (2017). Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environmental Pollution, 229, 976–983.


Chan, C. B., Hashemi, Z., & Subhan, F. B. (2017). The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology, Nutrition, and Metabolism, 42(8), 793–801.


Choo, E., & Dando, R. (2018). No detriment in taste response or expression in offspring of mice fed representative levels of sucrose or non-caloric sucralose while pregnant. Physiology and Behavior, 184, 39–45.


Cortinovis, C., Davanzo, F., Rivolta, M., & Caloni, F. (2015). Glyphosate-surfactant herbicide poisoning in domestic animals: An epidemiological survey. Veterinary Record, 176(16), 413–413.


Cressey, D. (2015). Widely used herbicide linked to cancer. Nature, 24 March 2015, 1–3.


Dess, N. K., Dobson, K., Roberts, B. T., & Chapman, C. D. (2017). Sweetener Intake by rats selectively bred for differential saccharin intake: Sucralose, stevia, and acesulfame potassium. Chemical Senses, 42(5), 381–392.


Dmuhal'skaja, E. B. (2018). Costojanie immunnoj sistemy u krys raznogo vozrasta pri dejstvii tjazhelyh metallov i raundapa [The state of the immune system in different age rats affected by the heavy metals and roundup]. Universum: Himija i Biologija, 51(9), 4–6 (in Russian).


Edwards, Q. A., Kulikov, S. M., Garner-O’Neale, L. D., Metcalfe, C. D., & Sultana, T. (2017). Contaminants of emerging concern in surface waters in Barbados, West Indies. Environmental Monitoring and Assessment, 189(12), 636.


El-Demerdash, F. M., Yousef, M. I., & Elagamy, E. I. (2001). Influence of paraquat, glyphosate, and cadmium on the activity of some serum enzymes and protein electrophoretic behavior (in vitro). Journal of Environmental Science and Health, Part B, 36(1), 29–42.


Frank, J. R., & Tworkoski, T. J. (1994). Response of canada thistle (Cirsium arvense) and leafy spurge (Euphorbia esula) clones to chlorsulfuron, clopyralid, and glyphosate. Weed Technology, 8(3), 565–571.


Fowler, S. P. G. (2016). Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiology and Behavior, 164, 517–523.


Gottrup, O., O’sullivan, P. A., Schraa, R. J., & Vanden, W. H. (1976). Uptake, translocation, metabolism and selectivity of glyphosate in canada thistle and leafy spurge. Weed Research, 16(3), 197–201.


Ganie, Z. A., Jugulam, M., & Jhala, A. J. (2017). Temperature influences efficacy, absorption, and translocation of 2,4-D or glyphosate in glyphosate-resistant and glyphosate-susceptible common ragweed (Ambrosia artemisiifolia) and giant ragweed (Ambrosia trifida). Weed Science, 65(5), 588–602.


Gardner, J. G., & Nelson, G. C. (2008). Herbicides, glyphosate resistance and acute mammalian toxicity: Simulating an environmental effect of glyphosate-resistant weeds in the USA. Pest Management Science, 64(4), 470–478.


Gil, H.-W., Park, J.-S., Park, S.-H., & Hong, S.-Y. (2013). Effect of intravenous lipid emulsion in patients with acute glyphosate intoxication. Clinical Toxicology, 51(8), 767–771.


Gong, T., Wei, Q.-W., Mao, D.-G., Nagaoka, K., Watanabe, G., Taya, K., & Shi, F.-X. (2016). Effects of daily exposure to saccharin and sucrose on testicular biologic functions in mice. Biology of Reproduction, 95(6), 116–116.


Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Scoccianti, C., Mattock, H., & Straif, K. (2015). Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology, 16(5), 490–491.


Hashimoto, K. (2011). Food coloring, sodium benzoate preservative, and D-serine: Implications for behavior. In: Preedy, V. R., Watson, R. R., & Martin, C. R. (Ed.). Handbook of behavior, food and nutrition. Springer, New York. Pp. 577–584.


Hietanen, E., Linnainmaa, K., & Vainio, H. (2009). Effects of phenoxyherbicides and glyphosate on the hepatic and intestinal biotransformation activities in the rat. Acta Pharmacologica et Toxicologica, 53(2), 103–112.


Jones, K. C. (1994). International programme on chemical safety (IPCS) environmental health criteria. Environmental Pollution, 84(2), 203.


Kello, D. (1989). WHO drinking water quality guidelines for selected herbicides. Food Additives and Contaminants, 6(sup001), 79–85.


Khoshnoud, M. J., Siavashpour, A., Bakhshizadeh, M., & Rashedinia, M. (2017). Effects of sodium benzoate, a commonly used food preservative, on learning, memory, and oxidative stress in brain of mice. Journal of Biochemical and Molecular Toxicology, 32(2), e22022.


Kniss, A. R. (2017). Long-term trends in the intensity and relative toxicity of herbicide use. Nature Communications, 8, 1–7.


Kobetičová, K., Mocová, K. A., Mrhálková, L., Fryčová, Z., & Kočí, V. (2016). Artificial sweeteners and the environment. Czech Journal of Food Sciences, 34(2), 149–153.


Kujawa, M. (1982). FAO plant production and protection paper 20, pesticide residues in food; report 1979, 90 seiten. Food and Agriculture Organization of the United Nations, Rome 1980. Food Nahrung, 26(2), 215–216.


Kuznetsova, E. M., & Chmil, V. D. (2010). Glyphosate: Environmental fate and levels of residues. Modern Problems of Toxicology Food and Chemical Safety, 48(1), 87–95.


Lee, H.-L., Chen, K.-W., Chi, C.-H., Huang, J.-J., & Tsai, L.-M. (2000). Clinical presentations and prognostic factors of a glyphosate-surfactant herbicide intoxication. A review of 131 cases. Academic Emergency Medicine, 7(8), 906–910.


Lee, H.-L., & Guo, H.-R. (2011). The hemodynamic effects of the formulation of glyphosate-surfactant herbicides. In: Larramendy, M. (Ed.). Herbicides, theory and applications. IntechOpen, Rijeka. Pp. 545–566.


Lohner, S., Toews, I., & Meerpohl, J. J. (2017). Health outcomes of non-nutritive sweeteners: Analysis of the research landscape. Nutrition Journal, 16(1), 1–21.


Mamy, L., Barriuso, E., & Gabrielle, B. (2005). Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Pest Management Science, 61(9), 905–916.


Martynov, V. O., & Brygadyrenko, V. V. (2017). The influence of synthetic food additives and surfactants on the body weight of larvae of Tenebrio molitor (Coleoptera, Tenebrionidae). Biosystems Diversity, 25(3), 236–242.


Nettleton, J. E., Reimer, R. A., & Shearer, J. (2016). Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiology and Behavior, 164, 488–493.


Njagi, G. D. E., & Gopalan, H. N. B. (1982). Cytogenetic effects of the food preservatives Sodium benzoate and sodium sulphite on Vicia faba root meristems. Mutation Research/Genetic Toxicology, 102(3), 213–219.


Olorunsogo, O. O., Bababunmi, E. A., & Bassir, O. (1979). Effect of glyphosate on rat liver mitochondria in vivo. Bulletin of Environmental Contamination and Toxicology, 22(1), 357–364.


Park, H.-W., Park, E. H., Yun, H.-M., & Rhim, H. (2011). Sodium benzoate-mediated cytotoxicity in mammalian cells. Journal of Food Biochemistry, 35(4), 1034–1046.


Pinto, D. E., Foletto, K. C., Nunes, R. B., Lago, P. D., & Bertoluci, M. C. (2017). Long-term intake of saccharin decreases post-absortive energy expenditure at rest and is associated to greater weight gain relative to sucrose in wistar rats. Nutrition and Metabolism, 14(1), 1–8.


Piper, P. W. (1999). Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radical Biology and Medicine, 27(11–12), 1219–1227.


Qin, X. (2016). The possible link between artificial sweeteners such as saccharin and sucralose and inflammatory bowel disease deserves further study. Inflammatory Bowel Diseases, 22(6), e17.


Roberts, A. (2016). The safety and regulatory process for low calorie sweeteners in the United States. Physiology and Behavior, 164, 439–444.


Saurette, E. M., Groza, L. G., Blowes, D. W., & Ptacek, C. J. (2017). Storage and preservation of artificial sweeteners in groundwater samples. Groundwater Monitoring and Remediation, 37(4), 71–81.


Shwide-Slavin, C., Swift, C., & Ross, T. (2012). Nonnutritive sweeteners: Where are we today? Diabetes Spectrum, 25(2), 104–110.


Sørensen, F. W., & Gregersen, M. (1999). Rapid lethal intoxication caused by the herbicide glyphosate-trimesium. Human and Experimental Toxicology, 18(12), 735–737.


Stella, J., & Ryan, M. (2004). Glyphosate herbicide formulation: A potentially lethal ingestion. Emergency Medicine Australasia, 16(3), 235–239.


Su-Ah, J., Ahmed, M., & Eun, J.-B. (2017). Physicochemical characteristics, textural properties, and sensory attributes of low-calorie cereal bar enhanced with different levels of saccharin during storage. Journal of Food Processing and Preservation, 42(2), e13486.


Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186.


Snider, D. M., Roy, J. W., Robertson, W. D., Garda, D. I., & Spoelstra, J. (2017). Concentrations of artificial sweeteners and their ratios with nutrients in septic system wastewater. Groundwater Monitoring and Remediation, 37(3), 94–102.


Sclafani, A., & Ackroff, K. (2017). Flavor preferences conditioned by nutritive and non-nutritive sweeteners in mice. Physiology and Behavior, 173, 188–199.


Stanner, S. (2010). The science of low-calorie sweeteners separating fact from fiction. Nutrition Bulletin, 35(4), 357–362.


Vasconcelos, M. A., Orsolin, P. C., Silva-Oliveira, R. G., Nepomuceno, J. C., & Spanó, M. A. (2017). Assessment of the carcinogenic potential of high intense-sweeteners through the test for detection of epithelial tumor clones (warts) in Drosophila melanogaster. Food and Chemical Toxicology, 101, 1–7.


Vymazal, J., & Dvořáková Březinová, T. (2016). Removal of saccharin from municipal sewage: The first results from constructed wetlands. Chemical Engineering Journal, 306, 1067–1070.


Weihrauch, M. R., & Diehl, V. (2004). Artificial sweeteners do they bear a carcinogenic risk? Annals of Oncology, 15(10), 1460–1465.


Williams, G. M., Kroes, R., & Munro, I. C. (2000). Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology, 31(2), 117–165.


Yadav, A., Kumar, A., Das, M., & Tripathi, A. (2016). Sodium benzoate, a food preservative, affects the functional and activation status of splenocytes at non cytotoxic dose. Food and Chemical Toxicology, 88, 40–47.


Yu, Y., & Zhou, Q.-X. (2005). Adsorption characteristics of pesticides methamidophos and glyphosate by two soils. Chemosphere, 58(6), 811–816.


Yamashita, H., Matsuhara, H., Miotani, S., Sako, Y., Matsui, T., Tanaka, H., & Inagaki, N. (2017). Artificial sweeteners and mixture of food additives cause to break oral tolerance and induce food allergy in murine oral tolerance model for food allergy. Clinical and Experimental Allergy, 47(9), 1204–1213.


Yang, Y.-Y., Liu, W.-R., Liu, Y.-S., Zhao, J.-L., Zhang, Q.-Q., Zhang, M., Zhang, J-N., Jiand, Y-X., Zhang, L-J., & Ying, G.-G. (2017). Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China. Science of the Total Environment, 590–591, 611–619. Mannervik, B. (2001). Measurement of glutathione reductase activity. Current Protocols in Toxicology, 7, 7.2.


Matteucci, E., & Giampietro, O. (2007). Electron pathways through erythrocyte plasma membrane in human physiology and pathology: Potential redox biomarker? Biomarker Insights, 2, 321–329.


Maurya, P. K., Kumar, P., & Chandra, P. (2015). Biomarkers of oxidative stress in erythrocytes as a function of human age. World Journal of Methodology, 5(4), 216–222.


May, J. M., Qu, Z.-C., & Morrow, J. D. (1996). Interaction of ascorbate and α-tocopherol in resealed human erythrocyte ghosts: Transmembrane electron transfer and protection from lipid peroxidation. The Journal of Biological Chemistry, 271, 10577–10582.


May, J. M., Qu, Z. C., & Cobb, C. E. (2004). Human erythrocyte recycling of ascorbic acid: Relative contributions from the ascorbate free radical and dehydroascorbic acid. Journal of Biological Chemistry, 279(15), 14975–14982.


Metere, A., Iorio, E., Scorza, G., Camerini, S., Casella, M., Crescenzi, M, Minetti, M., & Pietraforte, D. (2014). Carbon monoxide signaling in human red blood cells: Evidence for pentose phosphate pathway activation and protein deglutathionylation. Antioxidants and Redox Signaling, 20(3), 403–416.


O'Leary, B. R., Houwen, F. K., Johnson, C. L., Allen, B. G., Mezhir, J. J., Berg, D. J., Cullen, J. J., & Spitz, D. R. (2018). Pharmacological ascorbate as an adjuvant for enhancing radiation-chemotherapy responses in gastric adenocarcinoma. Radiation Research, 189(5), 456–465.


Ou, P., & Wolff, S. P. (1996). A discontinuous method for catalase determination at 'near physiological' concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. Journal of Biochemical and Biophysical Methods, 31(1–2), 59–67.


Pandey, K. B., & Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Medicine and Cellular Longevity, 3(1), 2–12.


Padayatty, S. J., & Levine, M. (2016). Vitamin C: The known and the unknown and goldilocks. Oral Diseases, 22(6), 463–493.


Razygrayev, A. V., & Arutyunyan, A. V. (2006). Determination of human serum glutathione peroxidase activity, by using hydrogen peroxide and 5,5’-dithio-bis (2-nitrobenzoic acid) [Opredelenie glutationperoksidaznoj aktivnosti v syvorotke krovi cheloveka s ispol'zovaniem peroksida vodoroda i 5,5’-ditiobis(2-nitrobenzojnoj kisloty)]. Klinicheskaia Laboratornaia Diagnostika, 6, 13–16 (in Russian).


Reisz, J. A., Wither, M. J., Dzieciatkowska, M., Nemkov, T., Issaian, A., Yoshida, T., Dunham, A. J., Hill, R. C., Hansen, K. C., & D'Alessandro, A. (2016). Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood, 128(12), 32–42.


Rinalducci, S., Marrocco, C., & Zolla, L. (2015) Thiol-based regulation of glyceraldehyde-3-phosphate dehydrogenase in blood bank-stored red blood cells: A strategy to counteract oxidative stress. Transfusion, 55(3), 499–506.


Sanford, K., Fisher, B. J., Fowler, E., Fowler, A. A., & Natarajan, R. (2017). Attenuation of red blood cell storage lesions with vitamin C. Antioxidants (Basel), 6(3), e55.


Shan, G., Yang, F., Zhou, L., Tang, T., Okoro, E. U., Yang, H., & Guo, Z. (2015). Increase in blood glutathione and erythrocyte proteins related to glutathione generation, reduction and utilization in African-American old women with diabetes. Journal of Environmental Science and Technology, 5(1), 3000251.


Scarpa, M. (1996). Ascorbate oxidation catalyzed by bis(histidine) copper (II). Inorganic Chemistry, 35(18), 5201–5206.


Soumya, R., & Vani, R. (2017). Vitamin C as a modulator of oxidative stress in erythrocytes of stored blood. Acta Haematologica Polonica, 48(4), 350–356.


Svistunenko, D. A., Dunne, J., Fryer, M., Nicholls, P., Reeder, B. J., Wilson, M. T., Bigotti, M. G., Cutruzzolà, F., & Cooper, C. E. (2002) Comparative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide. Biophysical Journal, 83(5), 2845–2855.


Su, D., May, J. M., Koury, M. J., & Asard, H. (2006). Human erythrocyte membranes contain a cytochrome b561 that may be involved in extracellular ascorbate recycling. Journal of Biological Chemistry, 281, 39852–39859.


Tousova, K., Susankova, K., Teisinger, J., Vyklicky, L., & Vlachova, V. (2004). Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology, 47(2), 273–285.


Tu, H., Li, H., Wang, Y., Niyyati, M., Wang, Y., Leshin, J., & Levine, M. (2015). Low red blood cell vitamin C concentrations induce red blood cell fragility: A link to diabetes via glucose, glucose transporters, and dehydroascorbic acid. EBioMedicine, 2(11), 1735–1750.


Tu, H., Wang, Y., Li, H., Brinster, L. R., & Levine, M. (2017). Chemical transport knockout for oxidized vitamin C, dehydroascorbic acid, reveals its functions in vivo. EBioMedicine, 23, 125–135.


VanDuijn, M. M., Tijssen, K., VanSteveninck, J., Van Den Broek, P. J., & Van Der Zee, J. (2000). Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. Journal of Biological Chemistry, 275, 27720–27725.


Vani, R., Soumya, R., Carl, H., Chandni, V. A., Neha, K., Pankhuri, B., Trishna, S., & Vatsal, D. P. (2015). Prospects of vitamin C as an additive in plasma of stored blood. Advances in Hematology, 4, 961049.


Witmer, J. R., Wetherell, B. J., Wagner, B. A., Du, J., Cullen, J. J., & Buettner, G. R. (2016). Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma. Redox Biology, 8, 298–304.


Xu, D. P., Washburn, M. P., Sun, G. P., & Wells, W. W. (1996). Purification and characterization of a glutathione dependent dehydroascorbate reductase from human erythrocytes. Biochemical and Biophysical Research Communications, 221(1), 117–121.


Xu, J., & Jordan, R. B. (1990). Kinetics and mechanism of the reaction of aqueous copper (II) with ascorbic acid. Inorganic Chemistry, 29(16), 2933–2936.


Zhang, Z. Z., Lee, E. E., Sudderth, J., Yue, Y., Zia, A., Glass, D., Deberardinis, R. J., & Wang, R. C. (2016). Glutathione depletion, pentose phosphate pathway activation, and hemolysis in erythrocytes protecting cancer cells from vitamin C-induced oxidative Stress. Journal of Biological Chemistry, 291(44), 22861–22867.

Published
2018-11-16
How to Cite
Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygadyrenko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591-597. https://doi.org/10.15421/021888

Most read articles by the same author(s)

> >>