Structural trace of adaptation in motive nuclei of spinal cord of rats in hypokinesia and after physical loading in the recovery period

  • S. L. Popel Precarpatian National University named after V. Stefanik http://orcid.org/0000-0001-9019-3966
  • B. M. Mitckan Vasyl Stefanyk Precarpathian National University
  • S. Z. Krasnopolsky Ivano-Frankivsk National Medical University
  • I. V. Melnik Ivano-Frankivsk National Medical University
Keywords: hypokinesia, physical loading, spinal cord, neurocytes, rats

Abstract

The purpose of this paper is to study the morphological changes of neurocytes in spinal cord of rats in hypokinesia and subsequent physical loading. Studies were performed on 55 laboratory rats of Wistar line. Materials of the research were the anterior horns of the gray matter of L5-S2 spinal segments. Preparations stained by Nissl and Viktorov were examined histologically. Hypokinesia was modeled following on the author’s technique. It was established that during prolonged hypokinesia in neurocytes of spinal cord of rats morphological changes in cell size and shape of the motor nuclei of all segments under study have been recorded. The number of hypochromic, hyperchromic destructively unchanged and hyperchromic destructively altered neurocytes increase; shadow cells appears, as well as cases of satellitosis and neuronophagia. Decrease in of albumen synthetical neurocyte function has been recorded. Physical loading of the average aerobic capacity leads to normalization of structural and functional state of neurocytes and enhances the reparative processes, as evidenced by a number of positive changes in morphometric parameters: increase in the number of normochromic neurocytes and decreasing the number of hyper- and hypochromic neurocytes with destructive signs, absence of pyknotic forms. Morphological parameters of neurocytes and their nuclei after physical loading of average aerobic capacity do not differ from those in the control group of intact animals. In neurocytes of this group of rats RNA concentration increases by 12.6% compared to animals after prolonged hypokinesia. Neurocytes of spinal cord of rats after prolonged hypokinesia develop significant morphological changes which are characterized by emergence of a significant number of hyperchromic neurocytes with signs of destructive changes and shadow cells, as well as and hypochromic neurocytes with signs of destructive changes, reduction in size and change of shape of perikaryons of neurocytes and their nuclei. Morphological changes of neurocytes after prolonged hypokinesia are accompanied by violations of biosynthetic processes, as evidenced by RNA decrease in the cytoplasm of efferent neurocytes of spinal cord of rats. Physical loading of average aerobic capacity leads to normalization of structural and functional state of neurocytes and promotes the reparative processes suported by positive changes in morphometric parameters.

References

Arciszewski, M.B.,Wąsowicz, K., 2006. Neurochemical properties of the middle cervical ganglion in the sheep. Ann. Anat. 188(1), 75–83. >> doi: 10.1016/j.aanat.2005.09.008

Bagautdinov, I.R., Vasil’ev, J.G., 2005. Morfologija dvigatel’nyh jader spinnogo mozga pri hronicheskoj gipokinezii [Morphology of motive kernels of spinal cord at chronic hypokynesia]. Fundamental’nye Issledovanija 5, 104–104 (in Russian).

Breit, S., 2002. Functional adaptations of facet geometry in the canine thoracolumbar and lumbar spine (Th10-L6). Ann. Anat. 184(4), 379–385. >> doi: 10.1016/S0940-9602(02)80059-0

Cash, W.J., O’Neill, S., O’Donnell, M.E., McCance, D.R., Young, I.S., McEneny, J., McDougall, N.I., Callender, M.E., 2014. Endothelial function, antioxidant status and vascular compliance in newly diagnosed HFE C282Y homozygotes. Adv. Med. Sci. 59(10), 28–33. >> doi:10.1016/j.advms.2013.07.001

Chugunov, A.V., Kamchatnov, P.R., Mihajlova, N.A., 2009. Korrekcija svobodnoradikal’nogo okislenija patogeneticheskij podhod k lecheniju ostrogo ishemicheskogo insul’ta [Correction of free radical oxidization is patogenetic approach to treatment of sharp ischemic stroke]. Zhurnal Nevrologii i Psihiatrii 10, 65–67 (in Russian).

Ciobica, A., Hritcu, L., Padurariu, M., Dobrin, R., Bild, V., 2010. Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: Relevance for anxiety and affective disorders. Adv. Med. Sci. 55(2), 289–296. >> doi: 10.2478/v10039-010-0035-2

Dykman, L., Khlebtsov, N., 2012. Gold nanoparticles in biomedical applications: Recent advances and perspective. Chem. Soc. Rev. 41, 2256–2282. >> doi: 10.1039/C1CS15166E

Ivanov, K.P., 2002. Voprosy stroenija i funkcii sistemy jenergosnabzhenija nejrona [Questions of structure and function of the system of energy supply of neuron]. Kolosovskie Chtenija: Mater. IV Mezhdunar. Konf. po Funkcional’noj Nejromorfologii. SPb., 44 (in Russian).

Jerastova, E.R., Samarin, M.J., Birjukova, O.V., 2001. Morfofunkcional’nye izmenenija jelementov nervnoj i jendokrinnoj sistem pri razlichnyh dvigatel’nyh rezhimah [Morfofunctional changes of elements of the nervous and endocrine systems at different motive modes]. Morfologija 121, 187–190 (in Russian).

Kamskova, Y.G., 2001. Changes in the antioxidant state and intensity of lipid peroxidation in the blood and liver during 30-day hypokinesia. Bull. Exp. Biol. Med. 132(10), 387–389.

Levitc’kiy, V.A., Popel, S.L., Zhurakіvs’ka, O.J., 2014. Sposіb viznachennja rіvnja fіzichnogo navantazhennja dlja shhurіv z eksperimental’nim strepozotocinovim dіabetom [Method of determination of level of the physical loading for rats with experimental sreptozocin diabetes]. Pat. 92278, Ukraїna. MKІ A61 V 5/024; A61N 3/00 / – № 92278; Zajavl. 03.03.2014; Opubl. 11.08.2014, Bjul. 15, 5 (in Ukrainian).

Mahovic, D., Zurak, N., Lakusic, N., Sporis, D., Zarkovic, N., Stancin, N., Bosnar-Puretic, M. 2013. The dynamics of soluble Fas/APO 1 apoptotic biochemical marker in acute ischemic stroke patients. Adv. Med. Sci. 58(2), 298–303. >> doi: 10.2478/ams-2013-0014

Majovski, L.V., Breiger, D., 2009. Development of higher brain functions: Birth through adolescence. In: Handbook of Clinical Child Neuropsychology. Springer Science + Business Media, LLC. >> doi: 10.1007/978-0-387-78867-8_4

Matsuzaki, F., Sampath, K., 2007. Wiring the nervous system: From form to function. Development 134, 1819–1822. >> doi: 10.1242/dev.004416

Mickan, B.M., Popel, S.L., 2001. Nervovo-m’jazovij aparat і gіpokіnezіja [Nerve-мuscle vehicle and hypokynesia]. Koncepcіja Rozvitku Galuzі Fіzichnogo Vihovannja і Sportu v Ukrainі. Prajt Hauz, Rіvne 2, 148–151 (in Ukrainian).

Narymbetova, T.M., Ormanbaev, K.S., Bajzakova, B.U., 2011. Gipokinezija i giperkinezija kak faktory riska v jekstremal’nyh uslovijah [Hypokynesia and hyperkynesia as risk factors in extreme terms]. Uspehi Sovremennogo Estestvoznanija 5, 64–66 (in Russian).

Nechipurenko, N.I., Pashkovskaja, I.D., Musienko J.I., 2008. Osnovnye patofiziologicheskie mehanizmy ishemii spinnogo mozga [Basic patophisiologycal mechanisms of ischemia of spinal cord]. Medicinskie Novosti 1, 713–716 (in Russian).

Nepomnjashсhih, L.M., Bakarev, M.A., 2009. Morfogenez metabolicheskih povrezhdenij skeletnyh myshc: Strategija ogranichenija povrezhdenija [Morfogenez of metabolic damages of skeletal muscles: Strategy of limitation of damage]. Vestnik Rossijskoj Akademii Medicinskih Nauk 7, 13–19 (in Russian).

Połubińska, A., Staniszewski, R., Baum, E., Sumińska-Jasińska, K., Bręborowicz, A., 2013. Sulodexide modifies intravascular homeostasis what affects function of the endothelium. Adv. Med. Sci. 58(2), 304–310. >> doi: 10.2478/ams-2013-0016

Popel, S.L., 2013. Changeability of neurons of spinal cord of rats of a different age in norm. European Applied Sciences 3(1), 14–16.

Popel, S.L., 2013. Budova mіkrocirkuljatornogo rusla okremih elementіv prostoї reflektornoi dugi pri obmezhennі ruhovoi aktivnostі [Structure of mіcrоcirculatory network of separate elements of simple reflex arc at limitation of motive activity]. Vіsnik Morfologіi. Vіnnicja 19(1), 10–15 (in Ukrainian).

Popel, S.L., Mickan, B.M., 2013. Trivalіst’, ob’yem ta іntensivnіst’ fіzichnih navantazhen’ pіslja dіi dovgotrivaloi gіpokіnezіy [Duration, volume and intensity of the physical loadings after action of of long duration hypokynesia]. A.s. 49326, Ukraine. MKІ A61 V 5/024 / . – № 49326; Zajavl. 20.12.2012; Opubl. 27.05.13, Bjul. 12, 4 (in Ukrainian).

Rakowska, A., Rudnicka, L., Olszewska, M., Kurzeja, M., 2012. Blood Vessels. Springer-Verlag, London. >> doi: 10.1007/978-1-4471-4486-1_5

Raimondo, S., Fornaro, M, Tos, P., Battiston, B., Giacobini-Robecchi, M.G., Geuna, S., 2011. Perspectives in regeneration and tissue engineering of peripheral nerves. Ann. Anat. 193(4), 334–340. >> doi: 10.1016/j.aanat.2011.03.001

Rebrova, O.J., 2006. Statisticheskij analiz medicinskih dannyh. Primenenie paketa prikladnyh programm Statistica [Statistical medical data analysis. Application of the Statisticа application package]. MediaSfera, Moscow (in Russian).

Rusu, M.C., Pop, F., Hostiuc, S., Dermengiu, D., Lală, A.I., Ion, D.A., Mănoiu, V.S., Mirancea, N., 2011. The human trigeminal ganglion: C-kit positive neurons and interstitial cells. Ann. Anat. 193(5), 403–411. >> doi: 10.1016/j.aanat.2011.06.005

Sazontova, T.G., Anchishkina, N.A., Archipenko, Y.V., 2007. Induction of HSPs and antioxidant defense enzymes during activation of free radical oxidation at the early stage of hypokinesia. Bull. Exp. Biol. Med. 143(4), 378–382. >> doi: 10.1007/s10517-007-0141-8

Shvalev, V.N., Sosunov, A.A., Majorov, V.N., 2001. Nervnaja tkan’ i nejroglija [Nervous fabric and neuroglia]. SpecLit, SPb (in Russian).

Sengul, G., 2015. Peripheral nervous system spinal cord cyto- and chemoarchitecture. In: The rat nervous system (Fourth Ed.). G. Paxinos (Ed.). Section II, 87–95.

Sies, H., 2015. Oxidative stress: A concept in redox biology and medicine. Redox Biology 4, 180–183. >> doi:10.1016/j.redox.2015.01.002

Smirnov, A.V., Chernov, D.A., Ivanauskene, N.J., 2000. Izmenenie struktury perifericheskih otdelov nervnoj i jendokrinnoj sistem rastushhego organizma pod vlijaniem gipodinamii i gipokinezii [The change of structure of peripheral departments of the nervous and endocrine systems of growing organism under influencing is hypodinamia and hypokynesia]. Morfologija 117(3), 112–115 (in Russian).

Smirnov, J.I., Smirnova, Z.D., Efranova, V.V., 2000. Vozrastajushhaja gipodinamija v sovremennom obshhestve – opasnyj nedug podrastajushhego pokolenija [Increasing hypodinamia in modern society is the dangerous ailment of rising generation]. Fizicheskaja kul’tura i sport v zhizni obshhestva: Mater. Mezhdunar. Nauch. Prakt. Konf. Cheljabinsk, 92–94 (in Russian).

Soubeyrand, M., Laemmel, E., Court, C., Dubory, A., Vicaut, E., Duranteau, J., 2013. Rat model of spinal cord injury preserving dura mater integrity and allowing measurements of cerebrospinal fluid pressure and spinal cord blood flow. Eur. Spine J. 22, 632–635. >> doi:10.1007/s00586-013-2744-2

Soubeyrand, M., Dubory, A., Laemmel, E., Court, C., Vicaut, E., Duranteau, J., 2014. Effect of norepinephrine on spinal cord blood flow and parenchymal hemorrhage size in acute-phase experimental spinal cord injury. Eur. Spine J. 23, 358–365. >> doi: 10.1007/s00586-013-3086-9

Stogov, M.V., 2009. Creatine metabolism in skeletal muscles during hypokinesia. Bull. Exp. Biol. Med. 148(7), 34–36. >> doi:10.1007/s10517-009-0631-y

Udina, E., Cobianchi, S., Allodi, I., Navarro, X., 2011. Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann. Anat. 193(4), 347–353. >> doi:10.1016/j.aanat.2011.02.012

Victorov, I.V., Prass, K., Dirnagl, U., 2000. Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin. Brain Res. Protoc. 5, 135–139. >> doi: 10.1016/S1385-299X(00)00004-0

Wielgat, P., Braszko, J.J., 2012. Significance of the cell adhesion molecules and sialic acid in neurodegeneration. Adv. Med. Sci. 57(1), 23–30. >> doi: 10.2478/v10039-012-0011-0

Willis, C.L., 2011. Glia-induced reversible disruption of bloodbrain barrier integrity and neuropathological response of the neurovascular unit. Toxicol. Pathol. 39(1), 172–185.

Wu, S., Wum, Y., Capecchi, M.R., 2006. Motoneurons and oligodendrocytes are sequentially generated from neural stem cells but do not appear to share common lineage – restricted progenitors in vivo. Development 133(4), 581–590. >> doi: 10.1242/dev.02236

Zhabotinskij, J.M., 1965. Normal’naja i patologicheskaja morfologija nejrona [Normal and pathological morphology of neuron]. Medicina, Leningrad (in Russian).

Published
2015-01-21
How to Cite
Popel, S. L., Mitckan, B. M., Krasnopolsky, S. Z., & Melnik, I. V. (2015). Structural trace of adaptation in motive nuclei of spinal cord of rats in hypokinesia and after physical loading in the recovery period. Regulatory Mechanisms in Biosystems, 6(1), 9-16. https://doi.org/10.15421/021502

Most read articles by the same author(s)