Mechanisms of antibiotic resistance of Enterobacteriaceae family representatives

  • K. R. Kotsyuba Oles Honchar Dnіpropetrovsk Natіonal Unіversity
  • O. S. Voronkova Oles Honchar Dnіpropetrovsk Natіonal Unіversity
  • A. І. Vіnnіkov Oles Honchar Dnіpropetrovsk Natіonal Unіversity
  • T. M. Shevchenko Oles Honchar Dnіpropetrovsk Natіonal Unіversity
Keywords: enterobacteria, antibiotic therapy, antibiotic resistance

Abstract

The paper deals with the basic medical scheme of antibiotics use for treatment of lesions caused by enterobacteria and mechanisms of resistance of Enterobacteriaceae to different classes of antibiotics. It is known that the main mechanisms of resistance to antibiotics are enzymatic inactivation, modification of the target, efflux, violation of conduct through the membrane and formation of metabolic shunt. The most common cases of resistance to beta-lactams among Enterobacteriaceae relate to production of plasmid and chromosomal beta-lactamases, violation of the permeability of the outer membrane, and modification of target penicillin binding proteins. Active release of antibiotics from the cell, or efflux, in Enterobacteriaceae is used for maintaining resistance to tetracyclines, macrolides, carbapenems. Genes of efflux system are localized on plasmids and contribute to rapid spreading among Enterobacteriaceae. Mutations are the basis of resistance to novobiocinum and rifampicinum. Enzymatic inactivation by modifying is typical for resistance to aminoglycosides. Three groups of enzymes are engaged in the process, by adding the molecule of acetic acid, phosphate or adenine. Joining of these groups is irreversible and leads to complete loss of biological activity of the antibiotic. Resistance to aminoglycosides appears also due to inhibition of drug penetration, that is associated with genetically determined mechanisms of electron transport through the membrane. Resistance to quinolones and fluoroquinolones is associated with the modification of topoisomerase II and IV which are targets of these groups of antibiotics. Resistance is possible as a result of changes in the structure of the target, breaching of penetration into the cell, and active release from the cell. The highest level of resistance is develope in the case of two- or three-stage mutations in one or the other, or both, subunits in different genes. At the same time, for breaching of the bacterial cell it is enough to suppress the activity of only one enzyme associated with different functions of both topoisomerases. Another mechanism of resistance to quinolones is the reduction of permeability through bacterial outer membrane, that it’s possible due to decreasing of permeability of porine channels. In this case, decreasing of permeability efficacy takes place not only for quinolones, but also for other classes of antibitics. In addition, reduced sensitivity to quinolones efflux may play the significant role. For clinical strains of microorganisms, cross-resistance to various drugs, associated with simultaneous production of various enzymes that inactivate antibiotics, is typical.

References

Bao, L., Peng, R., Ren, X., Ma, R., Li, J., Wang, Y., 2013. Analysis of some common pathogens and their drug resistance to antibiotics. Pak. J. Med. Sci. 29(1), 135–139.

Beloborodova, N.V., Bohdanov, M.B., Chernenkaia, T.V., 2000. Alhoritmi antibiotikoterapii: Rukovodstvo dlia vrachei [Algorithms of antibiotic therapy: A guide for physicians]. Anteia, Moscow (in Russian).

Bereznyakov, I.G., 2001. Resistentnost k antibiotikam: Prichini, mehanismi, puti preodoleniia [Antibioticresistance: Causes, mechanisms and ways to overcome]. Clin. Antibiotictherapy 4, 18–22(in Russian).

Bonelli, R.R., Moreira, B.M., Picão, R.C., 2014. Antimicrobial resistance among Enterobacteriaceae in South America: History, current dissemination status and associated socioeconomic factors. Drug Resist. Updat. 10 (in Press).

Cochard, H., Aubier, B., Quentin, R., van der Mee-Marquet, N., 2014. Extended-spectrum β-lactamase-producing Enterobacteriaceae in french nursing homes: An association between high carriage rate among residents, environmental contamination, poor conformity with good hygiene practice, and putative resident-to-resident transmission. Infect. Control Hosp. Epidemiol. 35(4), 384–389.

Decousser, J.W., Pina, P., Picot, F., Delalande, C., Pangon, B., Courvalin, P., Allouch, P., 2003. Frequency of isolation and antimicrobial susceptibility of bacterial pathogens isolated from patients with bloodstream infections: A French prospective national survey. J. Antimicrob. Chemother. 51(5), 1213–1222.

Drees, M., Pineles, L., Harris, A.D., Morgan, D.J., 2014. Variation in definitions and isolation procedures for multidrug-resistant gram-negative bacteria: А survey of the society for healthcare epidemiology of America Research Network. Infect. Control Hosp. Epidemiol. 35(4), 362–366.

Drlica, K., Zhao, X., 1997. DNA gyrase, topoisomerase IV, and 4-quinolones. Microbiol. Molec. Biol. Rev. 61, 377–392.

Greenwood, D., 1998. Worldwide prevalence of antimicrobial resistance. J. Med. Microbiol. 47(9), 751–755.

Grover, N., Sahni, A.K., Bhattacharya, S., 2012. Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Armed Forces Med. J. India 69(1), 4–10.

Gupta, K., Bhadelia, N., 2013. Management of urinary tract infections from multidrug-resistant organisms. Infect. Dis. Clin. North. Am. 28(1), 49–59.

Kohler, T., Micheahamzehpour, M., Plesiat, P., 1997. Differential selection of multidrug efflux systems by quinolones. Antimicrob. Agents Chemother. 41(11), 2540–2543.

Lee, B., Kang, S.Y., Kang, H.M., Yang, N.R., Kang, H.G., Ha, I.S., Cheong, H.I., Lee, H.J., Choi, E.H., 2013. Outcome of antimicrobial therapy of pediatric urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae. Infect. Chemother. 45(4), 415–421.

Liu, P.Y., Shi, Z.Y., Tung, K.C., Shyu, C.L., Chan, K.W., Liu, J.W., Wu, Z.Y., Kao, C.C., Huang, Y.C., Lin, C.F., 2014. Antimicrobial resistance to cefotaxime and ertapenem in Enterobacteriaceae: The effects of altering clinical breakpoints. J. Infect. Dev. Ctries. 8(3), 289–296.

Livermore, D.M., 2005. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8, 557–584.

Miller, G.H., 1996. Nature and rate of aminoglycoside resistance mechanisms. Clin. Drug Invest. 12(1), 1–12.

Nakamura, T., Komatsu, M., Yamasaki, K., Fukuda, S., Higuchi, T., Ono, T., Nishio, H., Sueyoshi, N., Kida, K., Satoh, K., Toda, H., Toyokawa, M., Nishi, I., Sakamoto, M., Akagi, M., Mizutani, T., Nakai, I., Kofuku, T., Orita, T., Zikimoto, T., Natsume, S., Wada, Y., 2014. Susceptibility of various oral antibacterial agents against extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneu-moniae. J. Infect. Chemother. 20(1), 48–51.

Nikaido, H., Nikaido, K., Harayama, S., 1991. Identification and characterization of porins in enterobacteria. Biol. Chem. 266(2), 770–779.

Nikaido, H., Normark, S., 1987. Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: A quantitative predictive treatment. Mol. Microbiol. 1(1), 29–36.

Nilsen, E., Haldorsen, B.C., Sundsfjord, A., Simonsen, G.S., Ingebretsen, A., Naseer, U., Samuelsen, O., 2013. Large IncHI2-plasmids encode extended-spectrum β-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli. Clin. Microbiol. Infect. 19(11), E516–518.

Pfaller, M.A., Flamm, R.K., Sader, H.S., Jones, R.N., 2014. Ceftaroline activity against bacterial organisms isolated from acute bacterial skin and skin structure infections in United States medical centers (2009–2011). Diagn. Microbiol. Infect. Dis. 17, S0732–8893.

Pozdeev, D.C., 2001. Medizinskaia mikrobiolohiia [Medical Microbiology]. Geotar-Med, Moscow (in Russian).

Randrianirina, F., Ratsima, E.H., Ramparany, L., Randremanana, R., Rakotonirina, H.C., Andriamanantena, T., Rakotomanana, F., Rajatonirina, S., Richard, V., Talarmin, A., 2014. Antimicrobial resistance of bacterial enteropathogens isolated from stools in Madagascar. BMC Infect. Dis. 14(1), 104.

Shapiro, A., 2002. Antibiotiki ta ih diia na zbudnikiv oportunistichnih ta nozokomialnih inftkzii [Antibiotics and their effects on opportunistic pathogens and nosocomial infections]. Laboratory Diagnostic. 3, 23-28 (in Ukrainian).

Sidorenko, S.V., 2003. Infekzii, vizivaemie mikroorganizmami semeistva Enterobacteriaceae [Infections caused by microorganisms of the family Enterobacteriaceae]. Clin. Antibiotictherapy 1, 5–9 (in Russian).

Sidorenko, S.V., Rezvan, S.P., Grudinina, S.A., 1998. Sravnitelnaia aktivnost meropenema і druhih antibiotikov v otnoshenii vozbuditelei nosokomialnih infekzii [Comparative activity of meropenem and other antibiotics against nosocomial infections]. Antibiotics and Chemiotherapy 1, 4–14 (in Russian).

Stratchounski, L.S., Belousov, Y.B., Kozlov, S.N. (Eds.), 2007. Prakticheskoe rukovodstvo po antiinfekzionnoi terapii [Practical guidance on antiinfective chemotherapy]. Makmakh, Smolensk (in Russian).

Thibaut, S., Caillon, J., Marquet, A., Grandjean, G., Potel, G., Ballereau, F., 2014. Epidemiology of third-generation cepha-losporin-resistant community-acquired Enterobacteria isolated from elderly patients. Med. Mal. Infect. 44(2), 57–62.

Tsiganenko, A.Y., Girich, E.V., 2009. Issledovanie sinerhisma antibakterialnih preparatov, ispolzuemih dlia lecheniia hnoinovospalitelnih zabolevanii kozhi i miahkih tkanei, vizvannih E. coli [Investigation of synergism of antibacterial drugs used for the treatment of inflammatory diseases of the skin and soft tissue caused by E. coli]. Experimental and Clinical Medicine 3, 25–27 (in Russian).

Veldman, K., Kant, A., Dierikx, C., van Essen-Zandbergen, A., Wit, B., Mevius, D., 2014. Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia. Int. J. Food Microbiol. 177C, 72–77.

Vorobyov, A.A. (Ed.), 2004. Medizinskaia mikrobiolohiia, virusolohiia i immunolohia [Medical microbiology, virology and immunology]. MIA, Moscow (in Russian).

Yakovlev, S.V., 2004. Mesto ftorhinolonov v lechenii bakterianih infekzii [Place of fluoroquinolones in treatment of bacterial infections]. Russian Medical Journal 11(8), 434–437 (in Russian).

Yakovlev, S.V., 2004. Kakie antibiotiki deistvitelno nuzhni dlia lecheniia urohenitalnich infekzii? [What antibiotics really need for the treatment of urogenital infections?]. Consilium-medicum 6(1), 40–45 (in Russian)

Published
2014-04-02
How to Cite
Kotsyuba, K. R., Voronkova, O. S., VіnnіkovA. І., & Shevchenko, T. M. (2014). Mechanisms of antibiotic resistance of Enterobacteriaceae family representatives. Regulatory Mechanisms in Biosystems, 5(1), 33-38. https://doi.org/10.15421/021407